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The low-dimensional electron gas owing topological property has attracted many interests recently. In 
this work, we study the influence of the electron-electron interaction on the arbitrary Chern number 
insulator. Using the mean-field method, we approximately solve the Hubbard model in the half-filling 
case and obtain the phase diagrams in different parametric spaces. We further verify the results by 
calculating the entanglement spectrum, which contains C chiral modes and corresponds to a real space 
partitioning.
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1. Introduction

The realization of different topological states of matter is one of 
the major challenges in condensed matter field for both fundamen-
tal and technological reasons [1,2]. The quantum anomalous Hall 
(QAH) effect, or called the Chern insulator in which the quantum 
Hall effect can arise without the net magnetic flux was first pro-
posed by Haldane on the honeycomb lattice [3]. The Chern insula-
tor has been theoretically predicted in a broad range of systems, 
such as the magnetically doped topological insulators and hon-
eycomb lattices formed by transition-metal or heavy-metal ions 
[4–6], but was only recently realized in experiment in the mag-
netic Cr-doped (Bi1−xSb)xTe3 thin film [7].

Among the studies of the Chern insulator, the interplay be-
tween the electron-electron correlation effect and band topology 
has also aroused people’s interests. It was found that in the pro-
totype Haldane–Hubbard (HH) model, the local onsite interaction 
favors an antiferromagnetic (AFM) insulator phase in the strong 
coupling regime [8,9]. The static mean-field study [10–12] reported 
a spin-density wave state at the intermediate strength. More in-
terestingly, with the dynamical mean-field study, a spontaneous 
symmetry breaking quantum Hall phase was found as the inter-
mediate phase between the band insulator and the Mott insulator 
[13]. Beyond the mean-field, the fluctuation-induced interaction 
can further open the gap in the system, rendering a first-order 
transition [14].
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It was worthy pointing out that besides the honeycomb lattice, 
the Chern insulator can also be realized on other lattice structures, 
such as the square lattice with the proper hopping integrals and 
spin-orbit couplings [15–18]. In this work, we investigate the influ-
ence of on-site Hubbard interaction on the arbitrary Chern number 
insulator and take the single-site square lattice model as an ex-
ample [19]. In the model, the valley-degeneracy breaking plays a 
decisive role in forming the different topological states. As the unit 
cell only owns one site in the square lattice, the magnetic property 
is much simpler than the honeycomb lattice where the AFM phase 
is common [8,9,20]. Such a model is excited by two aspects: first, 
the model can be considered as a simplified version to describe 
the electron motion in the double-perovskite monolayers [21]; sec-
ond, the ultracold atomic gases which can be controlled to a high 
degree offers a unique opportunity to investigate the correlation 
effect [22]. In Ref. [23], Cook et al. studied a similar single-site 
Chern insulator model and found an emergent dome of nematic 
order around the Chern insulator-normal insulator topological crit-
ical point that is driven by a quadratic band touching point.

Using the mean-field method, we self-consistently solve the 
half-filled Hubbard model. The main results are as follows: 1. We 
make a detailed discussion of how the mean-field parameter and 
local magnetization are intimately related with the Zeeman field 
and hopping integrals; 2. the mean-field phase diagrams are ob-
tained in different parametric spaces and we point out that the 
Hubbard interaction gives a rather effective route in modulat-
ing the Chern insulator phase transitions; 3. the Chern number 
phases are demonstrated by calculating the entanglement spec-
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Fig. 1. (Color online.) Schematic plot of the square lattice, where the two spin orbits 
are separated for clarity. The hopping terms are shown explicitly by the arrows. 
Note the downspin–downspin hoppings are opposite to the upspin–upspin ones and 
are not shown.

trum, which contains C chiral modes corresponding to a real space 
partitioning.

2. Model and mean-field theory

We start from a tight-binding model of spinful fermions on the 
single-site square lattice. When the onsite Hubbard interaction is 
included, the system can be described by the Hamiltonian:

H =
∑
〈i j〉

tσσ ′
i j c+

iσ c jσ ′ +
∑
〈〈i j〉〉

t′ σ
i j c+

iσ c jσ + �0

∑
i

(c+
i↑ci↑ − c+

i↓ci↓)

+ U
∑

i

ni↑ni↓, (1)

where c+
iσ (ciσ ) denotes the creation (annihilation) operator at site 

i with spin σ , ti j and t′
i j are the nearest-neighbor (NN) and next-

nearest-neighbor (NNN) hopping integrals, �0 gives the local Zee-
man splitting field, and U is the Hubbard repulsive strength. Ex-
plicitly, the NN hopping terms that are spin-conserving are given 
as t↑↑

i+x,i = t↑↑
i+y,i = −t↓↓

i+x,i = −t↓↓
i+y,i = −it2, while the spin-flip NN 

hopping terms are chosen as t↓↑
i±x,i = −it↓↑

i±y,i = t1, which can be 
considered as the Rashba SOCs and represent the kinetic terms. On 
the other hand, the spin-conserving NNN hopping terms that can 
be related to the intrinsic SOC are given as t′ ↑

i+x+y,i = −t′ ↑
i−x+y,i =

−t′ ↓
i+x+y,i = t′ ↓

i−x+y,i = t3. Here the spin-flip NNN hoppings have 
been neglected and the schematic plot of the spinful square lattice 
model is given in Fig. 1. The complex hopping which is related to 
a nonzero phase factor breaks the time-reversal symmetry and the 
Zeeman term breaks the inversion symmetry, where both terms 
can open the gap at Dirac points.

The tight-binding model can well describe the electron mo-
tion in {001} double-perovskite monolayers, such as the crystal of 
La2MnIrO6 [21]. In their work, the effective intersite SOCs between 
different orbits are also taken into account. Although our model is 
a simplified version, it still captures the main mechanism of the 
valley-degeneracy breaking that induces the high-Chern number 
phase.

Without interactions, U = 0, the model can support the non-
trivial Chern bands. In the basis of (c+

k↑, c+
k↓)T , the Hamiltonian in 

the momentum space becomes

H(k) =
(

Ak + �0 Bk
B∗

k −Ak − �0

)
, (2)

in which the matrix elements are

Ak = 2t2(sinkx + sinky) + 2t3[cos(kx + ky) − cos(kx − ky)],
Bk = 2t1(coskx − icosky),

here the lattice constant has been taken as a = 1. The 2 × 2 Hamil-
tonian gives the minimum structure to realize the arbitrary Chern 
number phase [24,25]. The different topological phases can be well 
characterized by the Chern number of the occupied bands. When 
the Chern number changes, the topological phase transition occurs, 
via a mass gap closing at the corners of the Brillouin zone (the 
low-energy valleys), which are K1 = ( π

2 , π2 ), K2 = (−π
2 , π2 ), K3 =

(−π
2 , −π

2 ) and K4 = ( π
2 , −π

2 ). In momentum space, the Berry cur-
vature �α in the vicinity of Kα is given as:

�α(k) = η
�α

2(k2 + �2
α)

3
2

, (3)

where k is the deviation of the momentum vector from Kα , η =
1(−1) for valley K1,3 (K2,4) and the mass terms are �1 = �0 +
4t2 − 4t3, �2 = �4 = �0 + 4t3 and �3 = �0 − 4t2 − 4t3. From 
the Berry curvature, it shows that the introduction of t2 breaks 
the valley degeneracy between K1 and K3, while the degeneracy 
between K2 and K4 is still preserved [25].

When the interaction is much stronger than the energy scale of 
the system, U � t1,2,3 and we consider the half-filled lattice with 
one electron per site, it is evidently that the ground state of the 
system is a charge-localized Mott insulator [20]. While for interme-
diate interaction strength, U ∼ t1,2,3, the correlation effect between 
electrons will compete with the topological bands. In this case, the 
correlation effect can be adequately captured by the mean-field 
theory, whose underlying idea is that the many-body interaction 
can be approximated as the interaction between the degrees of 
freedom on that site with an external bath that is created by all 
other degrees of freedom on other sites [26].

With the Hatree–Fock mean-field approximation, the Hubbard 
interaction can be decoupled as:

U
∑

i

ni↑ni↓ = U
∑

i

[(ni↑〈ni↓〉 + ni↓〈ni↑〉) − (σ+
i 〈σ−

i 〉

+ σ−
i 〈σ+

i 〉)], (4)

where 〈niσ 〉 = Nσ
Ns

denotes the average occupation number of elec-
trons at site i with spin σ , Nσ and Ns are respectively the elec-
tron number with spin σ and the site number, σ+

i = c+
i↑ci↓ and 

σ−
i = c+

i↓ci↑ . We have dropped the constant terms that are unim-
portant for the calculation. The first two terms are the Hatree 
terms, which represent the decoupling in a direct channel and 
favor Ising-type ordering in the z-direction. The Hatree term can 
well describe spontaneous symmetry breaking along a chosen axis 
and capture the magnetic property of the system [27,28]. The last 
two terms are the Fock exchange terms, which only affect the 
nondiagonal terms in H(k). However, as the Fock terms will not 
change the chiriality of the low-energy valleys, they have no influ-
ence on the topological properties and will not be considered. In 
addition, the decoupling mechanism of pairing channel is related 
with superconducting phase, which is not the topic in this work.

We consider the half-filling case, so the particle number con-
servation can be written as

〈ni↑〉 + 〈ni↓〉 = 1. (5)

In momentum space, the particle density gives the form of

〈nσ 〉 = 1

Ns

∑
k

〈ψ+
σ (k)ψσ (k)〉

= 1

Ns

∑
k,a

ψ+
aσ (k)ψaσ (k) f [Ea(k)], (6)
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