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Simple full vectorial analytical exact results are obtained for the propagation of Bessel beams through an 
interface separating different media characterized by material parameters (ε1, μ1) and (ε2, μ2). A real 
space description is used and all the results are written in terms of the transverse wavevector kt of the 
incident beam, taken as an input parameter. It is shown that perfect transmissions are obtained when 
the incident wave is either in a medium of larger or lower index of refraction, compared to the medium 
of the transmitted wave, and we provide the particular values, kF

t , that the transverse wavevector must 
obey in order to observe such effects. The phenomenon of total internal reflection is also verified for 
normal incidence.

© 2016 Published by Elsevier B.V.

1. Introduction

One of the main concerns of physical optics is to under-
stand the classical interaction and propagation of arbitrary waves 
through general materials. By considering the propagation of fully 
linearly polarized waves, Fourier optics adequately provides an ex-
planation for various effects by treating the electromagnetic field 
as a scalar quantity [1]. Nevertheless the electromagnetic field is 
characterized by a vector field and must obey Maxwell’s equations, 
so that any consideration about the polarization of the waves in 
question cannot be taken into account by using a pure scalar ap-
proximation. In 1987, Durnin discovered such a scalar solution of 
the Helmholtz equation, namely, the Bessel beam [2]. The search 
began for providing a vectorial formal solution of Maxwell’s equa-
tions and at the same time trying to preserve essential features 
of Durnin’s solution, such as the nondiffractive character and or-
bital angular momentum properties [3–5]. Unfortunately, there is 
no general approach to this problem and the interaction of Bessel 
beams (also known as X waves) with ordinary matter is studied 
with several distinct formalisms. Phenomena such as superlumi-
nal propagation properties through slabs [6,7], total internal re-
flection [8], changes on the size of the Bessel beam rings under 
reflection [9], interaction with absorbing media [10,11] are well 
established in the literature. We cite in particular the more gen-
eral formalism developed in [12,13] which closely resembles ours. 
The importance of understanding these solution stems from the 

E-mail address: paulocabf@gmail.com (P.A. Brandão).

remarkable range of important applications that Bessel beams can 
provide, in particular, optical micromanipulation of microsized par-
ticles [14], three dimensional imaging of living cells [15] and opti-
cal levitation [16] to cite a few.

Once vectorial solutions are obtained, the next logical step is to 
make the interaction of the beam with some material. In a previ-
ous paper [5] we have obtained a vectorial Bessel beam solution 
of Maxwell’s equations and it was shown that it possesses prop-
erties resembling Durnin’s solution. In this paper we take a step 
forward in asking what happens to this vector beam as it interacts 
with an interface separating dielectric materials characterized by 
material parameters (ε1, μ1) and (ε2, μ2) taken to be real positive 
quantities. In particular, we have found special configurations in 
this system such that total internal reflection and total transmis-
sion are obtained even when the Bessel beam undergoes normal 
incidence.

2. Theory

The analysis begins by presenting full vectorial analytic solu-
tions of Maxwell’s equations for two types of polarization modes 
TE and TM. The derivation was established in a previous pa-
per [5] and therefore only the essential results will be pre-
sented in the following. By considering time harmonic propaga-
tion exp(−iωt) and an electric field and magnetic field induc-
tion of the form E(x, y, z, t) = E(x, y) exp(ikz z − iωt) = [E⊥(x, y) +
Ez(x, y)ẑ] exp(ikz z− iωt) and B(x, y, z, t) = B(x, y) exp(ikz z− iωt) =
[B⊥(x, y) + Bz(x, y)ẑ] exp(ikz z − iωt), where z is the propagation 
direction, ω the angular frequency, kz the wavevector in the z
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direction and E⊥(x, y) = ẑ × [E(x, y) × ẑ] (same for B⊥), which 
is the transverse part of the electric field (ẑ · Et = 0), it can be 
demonstrated that

E(x, y, z, t) = exp(ikzz − iωt)

[
− iω

k2⊥
ẑ × ∇⊥Bz

]
, (1)

B(x, y, z, t) = exp(ikzz − iωt)

[
ikz

k2⊥
∇⊥Bz + ẑBz

]
, (2)

for TE polarization, where k2⊥ = εμω2 −k2
z , where ε and μ are the 

(position independent) dielectric constant and permeability of the 
medium where the optical beam propagates, respectively. The field 
component Bz(x, y) must be a solution of (∇2⊥ + k2⊥)Bz(x, y) = 0
where ∇2⊥ = ∇2 − ∂2

z . Transforming to cylindrical coordinates one 
may choose Bz(ρ, φ) = B0 Jm(k⊥ρ) exp(imφ) where B0 is the am-
plitude (taken to be real), Jm(k⊥ρ) is the m-order Bessel function 
of the first kind and m = 0, 1, 2... denotes the order of the solu-
tion. By substituting Bz in Eqs. (1) and (2), the following equations 
for TE polarized Bessel beam are obtained

E(ρ,φ, z, t) = E0 exp(ikzz + imφ − iωt)
[
φ̂ J− − iρ̂ J+]

, (3)

B(ρ,φ, z, t) = B0 exp(ikz z + imφ − iωt)

×
[

ikz

2k⊥
[ρ̂ J− + iφ̂ J+] + Jm(k⊥ρ)ẑ

]
, (4)

where J± = Jm−1(k⊥ρ) ± Jm+1(k⊥ρ) and E0 = −iωB0/2k⊥ . The 
TM solutions can be obtained quite easily by following the preced-
ing analysis and we will study them later. By doing a simple calcu-
lus problem it can be demonstrated that ∇ · E = 0 and ∇ · B = 0 as 
required by Maxwell’s equations without sources. With these full 
vectorial solutions one is ready to impose electromagnetic bound-
ary conditions.

3. Applications and discussion

To this end, consider that the half-space z ≥ 0 is occupied by 
a material characterized by (ε2, μ2), z ≤ 0 by a material character-
ized by (ε1, μ1) and a Bessel beam of order m is normally incident 
from negative to positive z. After using the usual Maxwell’s equa-
tions boundary conditions at z = 0 one may deduce the following 
relations:

B ′
0

B0
= E ′

0

E0
=

[
μ2kz − μ1k′′

z

μ2kz + μ1k′′
z

]
, (5)

B ′′
0

B0
= E ′′

0

E0
=

[
2μ2kz

μ2kz + μ1k′′
z

]
, (6)

where B0 (E0), B ′
0 (E ′

0) and B ′′
0 (E ′′

0) are the amplitudes of the 
incident, reflected and transmitted magnetic (electric) fields, re-
spectively, kz = (ε1μ1ω

2 − k2⊥)1/2 and k′′
z = (ε2μ2ω

2 − k2⊥)1/2 are 
the z components of the wavevector for z < 0 and z > 0. In de-
riving Eqs. (5) and (6) the continuity of the transversal wavevector 
was used. We also assumed that initially all three, i.e., the incident, 
reflected and transmitted waves, had different values of m, but af-
ter substitution into the original equations for the fields, it can be 
demonstrated that m = m′ = m′′ , which shows that the reflected 
and transmitted beams must have the same order as the incident 
one. All the relevant equations can be written in terms of the sin-
gle transverse wavevector k⊥ parameter of the incident beam (for 
a given set of material parameters and angular frequency ω). As 
we are concerned with propagating incident waves, k⊥ must al-
ways be smaller than (ε1μ1)

1/2ω. Now, either ε1μ1 < ε2μ2 or 
ε1μ1 > ε2μ2. For the first condition (a Bessel beam traveling from 
air to glass, for instance) let r1 = (ε1μ1)

1/2ω and r2 = (ε2μ2)
1/2ω

Fig. 1. Diagram showing the radius r1 = (ε1μ1)1/2ω and r2 = (ε2μ2)1/2ω for the 
case r2 > r1. For the region (a) it is shown propagating waves on both sides of the 
structure. The region outside the white circle is forbidden for propagating incident 
waves. The point (a) indicates a value k⊥ for the incident wave.

which corresponds to the radius shown in Fig. 1. As k⊥ must al-
ways be smaller than r1 for an incident propagating wave (which 
corresponds to the white region in Fig. 1), k⊥ < r2 and, conse-
quently, k′′

z is real and the transmitted wave propagates without 
decaying. Geometrically, it is clear that for every point inside the 
white circle of radius r1 it will also be inside of the larger circle 
with radius r2. We conclude that it is impossible to have evanes-
cent behavior for z > 0 if ε1μ1 < ε2μ2. Now, for a single TE po-
larized plane wave incident onto the interface, there is an angle, 
called Brewster’s angle, for which there is no reflected wave [9]. 
Making the analogy with our system, we ask if there is such be-
havior for the vector Bessel beam. By looking at Eq. (5) it is seen 
that if μ2kz = μ1k′′

z the amplitudes of the reflected electric and 
magnetic waves are zero. This happens for a k⊥ given by

kF⊥ = ω

[(
μ1μ2

μ2
2 − μ2

1

)
(ε1μ2 − ε2μ1)

]1/2

. (7)

Given (ε1,2, μ1,2) parameters, the transverse wavevector for full 
transmission can be calculated using Eq. (7). Be aware that the 
condition kF⊥ < r1 must also be obeyed. We will give examples 
later showing that the conditions can be fulfilled, though. Note that 
if the frequency is in the optical spectrum where μ1 ≈ μ2 ≈ μ0, 
this effect of full transmission probably will not be observable at 
all, for kF⊥ becomes much larger than r1. We conclude that an anal-
ogous Brewster’s angle exists for this situation but it is a little 
more subtle than the plane wave solution. Referring to Fig. 1 it 
may be said that there are some points inside the circle with ra-
dius r1 for which there is a full transmission of the incident beam. 
Later we will demonstrate a specific example where these points 
can be visualized.

Consider now ε1μ1 > ε2μ2 (r1 > r2) which can be thought of 
as a Bessel beam propagating from glass to air, for instance. The di-
agram representing r1 and r2 is shown in Fig. 2. For this situation, 
k⊥ still can have values lying inside both circles, as represented by 
the green shaded area. This represents propagating waves in both 
materials. But now there are points satisfying r2 < k⊥ < r1, such 
as point (a) in Fig. 2. For these points k′′

z becomes pure imagi-
nary and an evanescent wave appears in the region z > 0. This is 
analogous to the total internal reflection phenomenon of a polar-
ized plane wave incident upon a material from a higher to a lower 
index of refraction. What plays the role of the critical angle here 
is the critical wavevector kC⊥ = ω(ε2μ2)

1/2, i.e., when the incident 
transverse wavevector matches the value of r2. We conclude that 
as k⊥ acquires large values and becomes closer to r2, the state of 
the transmitted electromagnetic field goes through a transforma-
tion from a propagating to an evanescent state. It must be pointed 
out that Eq. (7) can still be satisfied for the green shaded area of 
Fig. 2 (this time we must have kF⊥ < r2). Full transmission of the 
incident wave through the boundary from the medium with larger 
refraction index to the lower (and vice versa) is possible for the 
vectorial Bessel beam.
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