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Stability of soliton families in one-dimensional nonlinear Schrödinger equations with non-parity-time 
(PT )-symmetric complex potentials is investigated numerically. It is shown that these solitons can 
be linearly stable in a wide range of parameter values both below and above phase transition. In 
addition, a pseudo-Hamiltonian–Hopf bifurcation is revealed, where pairs of purely-imaginary eigenvalues 
in the linear-stability spectra of solitons collide and bifurcate off the imaginary axis, creating oscillatory 
instability, which resembles Hamiltonian–Hopf bifurcations of solitons in Hamiltonian systems even 
though the present system is dissipative and non-Hamiltonian. The most important numerical finding is 
that, eigenvalues of linear-stability operators of these solitons appear in quartets (λ, −λ, λ∗, −λ∗), similar 
to conservative systems and PT -symmetric systems. This quartet eigenvalue symmetry is very surprising 
for non-PT -symmetric systems, and it has far-reaching consequences on the stability behaviors of 
solitons.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Parity-time (PT ) symmetry is currently at the forefront of 
research in physics and applied mathematics (see [1,2] for re-
views). This concept started out in quantum mechanics, where it 
was observed that complex potentials with parity-time symme-
try could still exhibit all-real spectra even though the underly-
ing Schrödinger operator is non-Hermitian [3]. Later, this concept 
spread to optics, where it was realized that optical waveguides 
with even refractive-index profiles and odd gain-loss distributions 
constitute PT -symmetric systems [4]. In this optical setting, PT
symmetry was observed for the first time [5–7]. In addition, it has 
been introduced into many other physical disciplines such as Bose–
Einstein condensates, electronic circuits and mechanical systems 
[8–13]. PT systems feature a unique property — phase transi-
tion, where the linear spectrum changes from all-real to partially-
complex when the system parameters cross a certain threshold [3,
4,14,15]. This phase transition has led to interesting applications 
such as single-mode PT lasers and unidirectional reflectionless 
optical devices [16–18]. A surprising property of PT systems is 
that, even though they are dissipative due to the gain and loss, 
they exhibit many properties of conservative systems, such as all-
real linear spectra and continuous families of stationary nonlinear 
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modes [3,4,9,14,15,19–26]. Thus, PT systems break the bound-
ary between conservative and dissipative systems and offer novel 
wave-guiding possibilities. In addition, PT systems make loss use-
ful, which is enlightening.

The downside of PT symmetry stems from the restrictive 
conditions set on the gain-loss profile, which must be odd. To 
overcome this restriction, non-PT -symmetric dissipative systems 
sharing the properties of PT -symmetric systems have been pur-
sued. For instance, wide classes of non-PT -symmetric potentials 
with all-real spectra were reported in [27–29,31,32]. In addition, 
it was discovered that in a certain class of such potentials with 
the form g2(x) + ig′(x), where g(x) is an arbitrary real function, 
solitons also appear as continuous families, which is very counter-
intuitive [31,33–35]. Furthermore, it was argued in [35] that po-
tentials of the form g2(x) + ig′(x) are the only one-dimensional 
(1D) non-PT -symmetric potentials which support soliton fami-
lies. However, stability properties of these soliton families are still 
largely unknown, except for some evolution simulations of per-
turbed simple-shaped solitons in a certain non-PT -symmetric po-
tential below a phase transition in [31], which suggest that those 
simple solitons could be stable.

In this paper, we systematically study the linear stability of 
various soliton families in 1D nonlinear Schrödinger (NLS) equa-
tions with non-PT -symmetric complex potentials both below 
and above phase transition. This study is performed by numeri-
cally computing the linear-stability spectra of these solitons. We 
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show that both simple-shaped and multi-humped soliton fam-
ilies can be linearly stable in a wide range of parameter val-
ues below and above a phase transition. In addition, a pseudo-
Hamiltonian–Hopf bifurcation is revealed, where pairs of purely-
imaginary eigenvalues in the linear-stability spectra of solitons 
collide and bifurcate off the imaginary axis, creating oscillatory 
instability, which resembles Hamiltonian–Hopf bifurcations of soli-
tons in Hamiltonian systems even though the present system is 
non-Hamiltonian. Our most important numerical finding is that, 
eigenvalues of the linear-stability operator of these solitons appear 
in quartets (λ, −λ, λ∗, −λ∗), similar to conservative systems and 
PT -symmetric systems. This quartet eigenvalue symmetry is very 
surprising for non-PT -symmetric dissipative systems, and its con-
sequences on the linear stability of these solitons are explained.

2. Preliminaries

The mathematical model we consider is the following NLS 
equation with an external potential

i�t + �xx + V (x)� + σ |�|2� = 0, (2.1)

where V (x) is a complex potential, and σ = ±1 is the sign of 
nonlinearity. This model governs nonlinear light propagation in an 
optical medium with gain and loss [4,36,37], as well as dynam-
ics of Bose–Einstein condensates in a double-well potential with 
atoms injected into one well and removed from the other well 
[11,12,38]. If the potential V (x) is real, Eq. (2.1) is conservative 
and Hamiltonian, and its properties have been investigated in nu-
merous articles for many decades [36,37]. If V (x) is complex but 
PT -symmetric, i.e., V ∗(x) = V (−x), where the superscript * rep-
resents complex conjugation, then this PT -symmetric system has 
been heavily studied in the last eight years [1,2]. If V (x) is complex 
and non-PT -symmetric, this equation is currently at the frontier 
of research. For non-PT -symmetric potentials of the form

V (x) = g2(x) + 2γ g(x) + ig′(x), (2.2)

where g(x) is a real asymmetric function and γ a real constant, 
the linear spectrum of the potential can be all-real, which is un-
usual [30–32]. Note that this form of the potential is equivalent to 
g2(x) + ig′(x) under a shift g(x) + γ → g(x) and a gauge trans-
formation to Eq. (2.1). It is used in this article since it is more 
convenient to induce a phase transition by varying the param-
eter γ while keeping the function g(x) fixed. A more impor-
tant phenomenon with the potential (2.2) is that, Eq. (2.1) un-
der this potential admits continuous families of solitons [31,34,
35]. This is surprising since, in typical dissipative systems, soli-
tons exist as isolated solutions with discrete power levels due to 
the requirement of balance between gain and loss [39]. Dissipa-
tive but PT -symmetric systems admit soliton families with con-
tinuous power levels, which is interesting [9,14,19–24]. However, 
the existence of such soliton families can be easily understood 
due to the PT symmetry, which assures the balancing of gain 
and loss for all PT -symmetric solitons [40]. Soliton families in 
non-PT -symmetric systems, on the other hand, are much less ob-
vious, and their existence has yet to be fully understood.

Solitons in Eq. (2.1) are of the form

�(x, t) = e−iμtψ(x), (2.3)

where μ is a real propagation constant, and ψ(x) is a localized 
function satisfying the equation

ψxx + μψ + V (x)ψ + σ |ψ |2ψ = 0. (2.4)

For the complex non-PT -symmetric potential (2.2), these solitons 
exist as continuous families, and they can be computed by vari-
ous numerical methods such as the squared-operator method and 

the Newton-conjugate-gradient method [36]. To study their linear 
stability, we perturb these solitons by infinitesimal normal modes,

�(x, t) = e−iμt
[
ψ(x) + f1(x)eλt + f ∗

2 (x)eλ∗t
]
, (2.5)

where | f1|, | f2| � |ψ |. Substituting this perturbation into Eq. (2.1)
and linearizing, we obtain a linear-stability eigenvalue problem

L

(
f1
f2

)
= λ

(
f1
f2

)
, (2.6)

where

L =
(

L11 L12
L∗

12 L∗
11

)
, (2.7)

and

L11 = i
[
∂xx + μ + V (x) + 2σ |ψ |2

]
, L12 = iσψ2.

This eigenvalue problem can be computed by the Fourier collo-
cation method (for the full spectrum) or the Newton-conjugate-
gradient method (for individual discrete eigenvalues) [36]. If eigen-
values with positive real parts exist, the soliton is linearly (spec-
trally) unstable; otherwise it is linearly (spectrally) stable.

Symmetry properties of the linear-stability operator L and its 
eigenvalues are important since they strongly influence the sta-
bility results. If the potential V (x) is real [i.e., when Eq. (2.1) is 
Hamiltonian], then L satisfies the following two symmetry rela-
tions,

L∗ = σ1Lσ−1
1 , (2.8)

L† = −σ3Lσ−1
3 , (2.9)

where the superscript † represents the Hermitian (conjugate trans-
pose) of a matrix operator, and

σ1 =
[

0 1
1 0

]
, σ3 =

[
1 0
0 −1

]

are the first and third Pauli spin matrices. The similarity relation 
(2.8) shows that L∗ and L share the same spectrum. Then, since 
the spectrum of L∗ is also the complex conjugate of the spec-
trum of L, we see that eigenvalues of L must come in conjugate 
pairs (λ, λ∗). The symmetry relation (2.9) shows that the spec-
trum of L† is negative of the spectrum of L. Since the spectrum 
of L† is also complex conjugate of the spectrum of L, eigenval-
ues of L then must come in pairs of (λ, −λ∗). Combining these 
two eigenvalue symmetries, we conclude that for real potentials 
(Hamiltonian systems), complex eigenvalues of L must come in 
quartets (λ, −λ, λ∗, −λ∗), which is a well-known fact. In the spe-
cial case when the eigenvalue λ is real or purely-imaginary, this 
quartet symmetry reduces to a pair symmetry (λ, −λ).

It is noted that in a real potential V (x), if the soliton ψ(x) is 
also real (which is generally the case), then L∗ = −L. Using this 
symmetry, instead of (2.9), one can also show that eigenvalues of L
come in pairs of (λ, −λ∗). However, for real potentials V in higher 
spatial dimensions, if the soliton ψ is complex (such as a vortex 
soliton), then the symmetry L∗ = −L would not hold, but (2.9) still 
does.

If the potential V (x) is complex but PT -symmetric, then the 
symmetry relation (2.8) persists, but the other relation (2.9) breaks 
down. In this case, if the soliton ψ(x) is also PT -symmetric, i.e., 
ψ∗(x) = ψ(−x), then another symmetry relation

L∗ = −PLP−1 (2.10)

is valid, where P is the parity operator, i.e., P f (x) ≡ f (−x). Uti-
lizing the two symmetry relations (2.8) and (2.10) and repeating 
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