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Geometry of fast magnetosonic rays, wavefronts and shock waves
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Fast magnetosonic waves in a two-dimensional plasma are studied in the geometrical optics approxima-
tion. The geometry of rays and wavefronts influences decisively the formation and ulterior evolution of 
shock waves. It is shown that the curvature of the curve where rays start and the angle between rays 
and wavefronts are the main parameters governing a wide variety of possible outcomes.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

While the model of ideal magnetohydrodynamics represents 
the simplest description of the evolution of a neutral plasma, and 
both its weaknesses and its strengths are well known, the long 
term behavior of solutions is anything but easy to predict. In 
common with all nonlinear hyperbolic systems, shocks may de-
velop and indeed do in many physically relevant situations, but 
their location and later evolution are extremely complex problems. 
However, for high frequency perturbations the methods of nonlin-
ear geometric optics provide a more amenable analytical approach. 
While its philosophy is highly classical [1,2], rigorous mathemati-
cal justifications are more recent and in fact continue to this day 
[3–5]. There exists a vast bibliography for this technique and its 
applications [6–8], e.g. in elasticity [9], fluid dynamics [10,11] and 
ideal MHD [12,13]. The most desirable case occurs when dealing 
with waves of a single phase. When one admits superposition of 
waves whose phases are different solutions of the eikonal equa-
tion, resonance may occur [14,15] and the waves interact in un-
suspected ways. Methods to deal with particular cases have been 
successfully applied e.g. to the two-dimensional Euler equation [5]. 
We will assume a single phase and make use of two excellent sur-
vey articles [16,17]. Even in this case most specific results assume 
dependence on a single spatial variable (although the system itself 
may be multidimensional). This way rays are straight and parallel 
lines and there is no trouble with their intersection. We wish to 
analyze a genuinely multidimensional case, keeping the remaining 
data as simple as possible; thus we consider propagation of fast 
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magnetohydrodynamic waves in a static plane equilibrium: den-
sity, pressure and magnetic field are constant. Rays are straight 
lines and their angle with wavefronts is constant along each ray. 
Nevertheless, setting the location of the initial perturbation along 
an arbitrary curve in the plane, we allow for rays to converge 
generating caustics, and the wavefront normal also differ among 
different rays. The crucial parameters are precisely the curvature 
of the original curve, and also the variation along it of the angle 
between the static magnetic field and the normal. A very lengthy 
calculation shows that the first order term for the asymptotic ex-
pansion of the solution satisfies a differential equation along the 
rays which may be reduced to the Burgers equation, whose behav-
ior is well understood. In particular the time of shock formation 
and the ulterior evolution of the shock wave are widely available 
in the literature e.g. in [7,8] and specially in [18]. However, the 
necessary changes both of variables and functions to reduce our 
problem to a Burgers form depend on the sign and relative size 
of the equilibrium quantities, plus the data in the original curve, 
so the admirable universality of the Burgers solution (which tends 
always to an N-wave) gives rise to a surprising variety of possible 
outcomes for the velocity, the shock strength and the overall shape 
of this wave. A final word of caution related to the intrinsic limi-
tations of nonlinear geometrical optics. The evolution of the shock 
along each ray is governed by the Rankine–Hugoniot relations, but 
there is no guarantee that the final solution, transported through 
different rays, will satisfy also the Rankine–Hugoniot relations in 
the transverse direction to these rays. To achieve this further con-
straints in the original values would be necessary. Although the 
wavelength of our solutions is small, when rays approach one 
another interference occurs, which is not covered by geometrical 
optics; obviously for diverging rays the approximation is excellent.
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2. Geometry of rays

Consider a quasilinear hyperbolic system, written in the Ein-
stein notation

∂u

∂t
+ A j(x,u)

∂u

∂x j
+ C(x,u) = 0. (1)

For any spatial vector k and equilibrium state u0 take a fixed 
eigenvalue �(k),

det(�(k)I + A j(x,u0)k j) = 0. (2)

The eikonal equation associated to this eigenvalue is
∂φ

∂t
= �(∇φ), (3)

and φ is the phase. In our case the system will be the ideal MHD 
one, and we choose for � the fast magnetosonic frequency (see 
e.g. [19]). If u0 corresponds to a static state with pressure P , den-
sity ρ and magnetic field B,

�(k)2 = 1

2

(
∂ P

∂ρ
+ B2

ρ

)
|k|2

+ 1

2

[(
∂ P

∂ρ
+ B2

ρ

)2

|k|4 − 4
∂ P

∂ρ

(B · k)2

ρ
|k|2

]1/2

. (4)

Rays are solutions of the system

dx

dt
= ∇k�(x,k)

dk

dt
= −∇x�(x,k). (5)

The phase is constant along rays,

d

dt
(φ(t,x(t))) = 0. (6)

Often one takes a normalized vector n = k/|k| and uses the fre-
quency

c(n) = �(k)

|k| . (7)

Equations (5) for the plane may be written in terms of c, n and its 
orthogonal n⊥ , chosen so that {n, n⊥} form an orthonormal posi-
tive system:

dx

dt
= cn + (n⊥ · ∇nc)n⊥, (8)

dn

dt
= −(n⊥ · ∇xc)n⊥. (9)

For static equilibria, the fast magnetosonic frequency c(n) satisfies

c(n)2 = 1

2

(
∂ P

∂ρ
+ B2

ρ

)
+ 1

2

[(
∂ P

∂ρ
+ B2

ρ

)2

− 4
∂ P

∂ρ

(B · n)2

ρ

]1/2

.

(10)

This equation may be written in terms of the speed of sound c2
s =

∂ P/∂ρ , Alfvén speed c2
A = B2/ρ , and the angle θ that forms the 

magnetic field B with n:

c(n)2 = 1

2
(c2

s + c2
A) + 1

2

[
(c2

s + c2
A)2 − 4c2

s c2
A cos2 θ

]1/2
. (11)

From now on we will consider a static ideal MHD equilibrium 
where both magnetic field and density are constant in space. In 
this case c(n) does not depend on x, so that we find from (9) that 
n (and n⊥) are constant along the ray; and since both coefficients 

in (8) are constant, rays are straight lines. Denoting by b the unit 
magnetic field, by our definition of θ

n = cos θ b + sin θ b⊥

n⊥ = − sin θ b + cos θ b⊥, (12)

which implies

dn

dθ
= (− sin θ)b + (cos θ)b⊥ = n⊥, (13)

so that, writing as in (11) c as a function of θ (all the rest being 
constants), and denoting by c′ the derivative of c with respect to θ ,

dc

dθ
= c′(θ) = dn

dθ
· ∇nc = n⊥ · ∇nc, (14)

so that (8) may be written

dx

dt
= cn + c′n⊥. (15)

We see from (5) that k = k0 is constant along the ray, and since 
∇φ = k0, this is also constant along the ray, as well as

∂φ

∂t
= −c|k0|. (16)

Let us fix a single ray, and call α = cn + c′n⊥ . Then the ray is given 
by

x(t) = αt + x(0). (17)

Choosing as parameter the arc length s instead of t so that we may 
reserve this for the time,

x(s) = α

|α| s + x(0). (18)

Since

d

dt
φ(t, s(t)) = ∂φ

∂t
+ |α|∂φ

∂s
= 0, (19)

we find the simple expression for the phase in a single ray

φ(t, s) = c
|k0|
|α| (s − |α|t) + const. (20)

Abbreviating |α| = α, and labeling φ(0, 0) = 0, we may write

φ(t, s) = A(s − αt). (21)

To set the ray geometry appropriate to our problem, we start from 
a curve g parametrized by the arc length ξ , ξ ∈ (ξ0 − ε, ξ0 + ε), 
and consider rays orthogonal to this curve. Let us therefore take a 
normal unitary vector T, chosen so that g′(ξ) = T⊥(ξ), and T, T⊥
form a positive orthonormal system. Thus the ray starting at g(ξ)

may be parametrized by the arc length s as s → g(ξ) + sT(ξ). It is 
easy to see that the transported curves gs : ξ → g(ξ) + sT(ξ) form 
with the rays a family of orthogonal curves for as long as there is 
no self-intersection. While (ξ, s) form a global family of orthogonal 
coordinates for the area covered by these curves, the fact that ξ
is not the arc length in the curve gs makes us to choose r, the 
arc length on this curve, starting at (r = 0) (i.e. ξ = ξ0), as new 
variable. We see that r = r(ξ, s). Since T⊥ is the tangent vector to 
gs and T is minus the normal vector,

dT⊥

dr
= −κT

dT

dr
= κT⊥, (22)

where κ = κ(r, s) represents the curvature of gs . Let us find κ(r, s)
in terms of the curvature of the original curve κ(r, 0). We have

g′
s : r → g′(r) + sT′(r) = T⊥(r) + sκ(r,0)T⊥(r)

g′′
s : r → −κ(r,0)T(r) + s

∂κ

∂r
(r,0)T⊥(r) − sκ(r,0)2T(r). (23)
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