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Zigzag phosphorene ribbons can accommodate degenerate edge states that decay from edge to bulk. The 
electronic structure of phosphorene ribbons, both the bulk bands and the edge bands, can be tuned by 
normally applying an electric field. The electrical field enlarges the energy gap parabolically, which is a 
second order perturbation effect. The external field as a first order perturbation lifts the degeneration 
of the edge bands and changes their decay property. The localization of edge states is increased by 
the electric field and the decay length as a function of wavevector in the whole Brillouin zone can be 
obtained by measuring the electric response of the edge band extreme energies.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Few-layered back phosphorus was exfoliated from its bulk 
counterpart recently [1]. Its field-effect transistors were proven 
to have large on-off current ratio at room temperatures [2–5]. 
Phosphorene, a mono-layer of back phosphorus, is a large gap 
material with high mobility and is regarded as a very promis-
ing monolayer material for its excellent electronic properties [6,7]. 
The phosphorene lattice has puckered structure, and its in-plane 
projection is a deformed honeycomb lattice as demonstrated in 
Fig. 1. First principle calculations imply that the electric structure 
can be well fitted by the tight-binding model with five types of 
hopping parameters [8,9]. The lattice structure and hopping pa-
rameters result in the band structure, collective excitations, and 
the optical response exhibit strong anisotropy [11–16]. Phospho-
rene sheet is super flexible and can sustain large strain [10]. By 
applying strain, the electronic structure and optic properties can 
be modified [17–19]. It was reported that there exist surface bands 
localized at edges of phosphorene ribbons [20–23]. The topologic 
origin of these edge bands was discussed recently by a few litera-
tures [24,25].

Because the vertical spacing between the puckered-up and 
puckered-down atom sublayers, the normal applied electric field 
has effects on the band structure of phosphorene. In this paper, we 
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investigated electronic structure of phosphorene ribbons under the 
influence of normally applied electric field using the tight-binding 
model. The electric field increases the band gap parabolically as a 
second order perturbation, but affects the edge bands of the zigzag 
ribbon as a first order perturbation. The electric field makes the 
two degenerate edge bands split and departure away from each 
other, changes the edge band dispersion, and decreases the de-
cay length of edge states. The edge states at � point is the least 
localized ones, and those at the Brillouin zone corners are the 
most localized ones with zero decay length. By studying the re-
sponse of the edge band split to the normally applied field, the 
decay length as a function of wavevector in the whole Brillouin 
zone can be obtained by measuring the extreme energies of edge 
bands.

2. Band structure of phosphorene ribbons

The in-plane parameters of phosphorene lattice are (in units 
of Å) a = 0.8014, bx = 1.515, and by = 1.674, and the vertical dis-
tance between the two puckered-up and puckered-down sublayers 
is l = 2.150 [22]. The primitive translational cell is denoted by the 
rectangular in the figure, and its dimensions are dx = 2(a + bx), 
and dy = 2by . When the lattice is normally subjected by an electric 
field E , a potential difference between the two sublayers 2δ = eEl
is induced, where e is the charge of electron. In this paper, we use 
δ to refer the electric field, and keep in mind that 1 eV of δ means 
0.93 V/Å of E . The tight-binding Hamiltonian reads
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Fig. 1. (Color online.) Sketch of phosphorene lattice. Red- and blue-filled circles rep-
resent puckered-up and puckered-down phosphorus atoms, the rectangular shows 
the primitive translational cell, and the inset shows the A-type (empty circles) and 
B-type (filled circles) sublattice sites.

Fig. 2. (Color online.) Band structure of (a, b) armchair and (c, d) zigzag phospho-
rene ribbons of 50 lateral atoms. The atom labelling rule in armchair and zigzag 
directions can be found in Fig. 1.

H =
∑
〈i, j〉

ti jc
+
i c j +

∑
i

V ic
+
i ci, (1)

where c+
i (ci) is the creation (annihilation) operator of electron on 

site i, V i is the on-site potential induced by the electric field, and 
the first summation is carried over all nonzero hoppings. The five 
types of nonzero hoppings, t1, t2, t3, t4, and t5 (see Fig. 1), which 
are involved in the tight-binding model for properly describing the 
electronic structures, are reported to be (in units of eV) −1.220, 
3.665, −0.205, −0.105 and −0.055, respectively [8]. Among them, 
t1 and t2 are the nearest-neighbor hoppings and are the largest 
ones in magnitude, which determine the main features of the band 
structure.

Fig. 2 shows the calculated band structure of armchair and 
zigzag ribbons without and with electric field applied. The energy 
gap occurs at the � point and becomes larger when the elec-
tric field is applied. The anisotropy between x-direction (armchair 
direction) and y-direction (zigzag direction) can be clearly seen. 
For the zigzag ribbon, there exist two cosine-like degenerate edge 
bands within the energy gap when no electric field applied. The 

degeneration is lifted by the electric field, and the two degen-
erated bands will departure away from each other further away 
when the electric field becomes larger. The two edge bands are 
spatially localized near the two opposite edges of the zigzag rib-
bon. The topologic origination of these edge bands was explained 
detailedly in Ref. [24] and [25] by means of winding number anal-
ysis and is not addressed here. The electric field affects the edge 
bands much more apparently than the bulk ones, which implies 
that the electric field works on the bulk and the edge bands as 
different order of perturbation.

The energy gap under electric field can be obtained as follow-
ing. At � point, the k-space Hamiltonian in basis of |i〉 (quantum 
states of electron on site i in the primitive cell with i = 1, 2, 3, 4) 
reads

h =

⎛
⎜⎜⎝

δ c1 c2 c3
c1 −δ c3 c2
c2 c3 δ c1
c3 c2 c1 −δ

⎞
⎟⎟⎠ . (2)

The matrix elements c1, c2 and c3 are defined by

c1 = t2 + t5,

c2 = 4t4,

c3 = 2t1 + 2t3.

(3)

We introduce the unitary matrix

U = 1

2

⎛
⎜⎜⎝

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎞
⎟⎟⎠ (4)

to transform the Hamiltonian into

H = U+hU =

⎛
⎜⎜⎝

εc 0 0 δ

0 εv δ 0
0 δ εT 0
δ 0 0 εB

⎞
⎟⎟⎠ , (5)

where εc , εv , εT and εB are the energies at � point of conduction 
band, valance band, top band, and bottom band without electric 
field applied, respectively. The expressions of those band energies 
are

εc = c2 + |c1 + c3|,
εv = c2 − |c1 + c3|,
εT = −c2 + |c1 − c3|,
εB = −c2 − |c1 − c3|.

(6)

The energy gap without electric field applied (δ = 0) is evaluated 
as εg = εc − εv = 2(2t1 + 2t3 + t2 + t5) = 1.52 eV. Eq. (5) that, at �
point, the conduction band only couples to the bottom band, and 
the valence band interacts with the top band. The Hamiltonian in 
the equation can be decomposed into two 2 × 2 Hamiltonians, the 
band energies under the influence of electric field can be obtained 
analytically. After having the band energies with the electric field, 
we calculate the band gap as

E g = 4t1 + 4t3 + 2
√

(t2 + t5)2 + δ2. (7)

The band gap as function of electric field is shown as the solid 
curve in Fig. 3 (a).

If δ is a small parameter, the response of the energy band to 
the electric field can be well understood by means of the per-
turbation theory. Eq. (5) is expressed in basis of the eigen states 
without electric field (if we set δ = 0, the matrix is diagonal). Be-
cause there is no diagonal term induced by the electric field, the 
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