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Weak measurements done on a subsystem of a bipartite system having both classical and nonClassical 
correlations between its components can potentially reveal information about the other subsystem with 
minimal disturbance to the overall state. We use weak quantum discord and the fidelity between the 
initial bipartite state and the state after measurement to construct a cost function that accounts for both 
the amount of information revealed about the other system as well as the disturbance to the overall 
state. We investigate the behaviour of the cost function for families of two qubit states and show that 
there is an optimal choice that can be made for the strength of the weak measurement.

© 2017 Published by Elsevier B.V.

NonClassical correlations in quantum states including, but not 
limited to, entanglement has been a topic of significant interest in 
the recent past because of the potential and promise held forth by 
quantum information processing and quantum technologies [1–3]. 
Ollivier and Zurek [4] and independently, Henderson and Vedral 
[5], noted that mixed quantum states allowed for the possibility 
of having nonClassical correlations other than entanglement and 
quantified the same in terms of the quantum discord. A variety of 
alternate measures of nonClassical correlations in a bipartite quan-
tum state were subsequently proposed [2,6,7]. A general strategy 
followed in constructing measures of nonClassical correlations is 
to subtract the ‘classical’ correlations in a bipartite state from the 
‘total’ correlations; treating what remains as a quantifier of the 
nonClassical or quantum correlations in the state [8].

Typically, entropic measures like the mutual information and 
relative entropy are used to quantify the correlations in construct-
ing the various measures. Quantifying the total correlations in a 
bipartite quantum state is straightforward, for instance, using the 
quantum mutual information. However, defining the ‘classical’ part 
of the total correlations is often a relatively ambiguous task. One 
strategy is to posit classical observers measuring one or both of the 
subsystems so as to quantify the correlations in the resultant mea-
surement statistics. To achieve this, the classical observers utilise
the classical counterpart of the same entropic measure of quan-
tum correlations that was used to quantify the total correlations. 

E-mail address: varad_pande@yahoo.in (V.R. Pande).

Significantly though, in the quantum case, the measurement statis-
tics depend on the measurement done. This necessitates a further 
maximisation of the measure of classical correlations over all mea-
surement strategies in order to disambiguate the discord-like mea-
sure to the maximum extent possible. In the ensuing treatment, 
quantum discord is considered as the example of nonClassical cor-
relations. The total correlations in a bipartite state ρAB are mea-
sured in terms of the quantum mutual information defined as

I(A : B) = S(ρA) + S(ρB) − S(ρAB), (1)

where S(ρ) = −tr[ρ logρ] is the von Neumann entropy of a 
state ρ and ρA,B = trB,A(ρAB) are the reduced (partial trace) den-
sity matrices of subsystems A and B . Based on a general (POVM) 
measurement on subsystem B given by {E B

j } and the resultant 
measurement statistics {pB

j } we can define the ‘classical’ mutual 
information between A and B as

J (A : B) = S(ρA) − S(A|B), (2)

where

S(A|B) =
∑

j

pB
j S(ρA|E B

j
),

is the conditional entropy of subsystem A conditioned on the mea-
surement on B . Here, ρA|E B

j
is the post-measurement state of A

corresponding to the result labelled by j obtained on measuring B . 
Quantum discord is defined as

D(A, B) ≡ I(A : B) − max
{E B

j }
J (A : B). (3)
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Note that I(A : B) = J (A : B) and D = 0 as a consequence of Bayes’ 
theorem if the quantum state ρAB is replaced by a joint probability 
distribution p(A, B) describing a bipartite classical system.

Any discussion of a measurement on a quantum system is in-
complete without the unavoidable disturbance it causes on the 
system. In fact, the original context in which Ollivier and Zurek in-
troduced quantum discord is by discussing the disturbance caused 
on one subsystem of a bipartite state due to projective measure-
ments performed on the other. While this aspect was rarely con-
sidered in subsequent discussions on quantum discord and other 
measures of nonClassical correlations, the question was brought 
back into focus recently by exploring the behaviour of discord 
and discord-like measures when the measurements on one or 
both subsystems were restricted to weak quantum measurements 
[9,10]. The weak measurement formalism proposed by Aharonov, 
Albert and Vaidman [11], and elucidated further in [12], gave a 
means of quantifying the disturbance on a quantum state due to 
the interaction of the system with the ‘pointer’ of a measuring 
device. Recently, there has been progress in investigating weak 
measurements and their interesting consequences including weak 
value amplification in the laboratory as well [13–15]. Oreshkov 
and Brun [16] recast weak measurement using the language of 
POVMs and further showed that any generalised measurement can 
be modelled as a sequence of weak measurements. In the follow-
ing we take the approach in [16] and use a POVM to model weak 
measurements because our primary focus is on the limited changes 
to the measured system due to the weak measurement and we do 
not consider here the post-selection through projective measure-
ments that is a part of the approach in [11].

Steering clear of the foundational issues raised by weak mea-
surements including those related to complex weak values, weak 
value amplification [17,18], etc., we motivate the investigations in 
this Letter through broad considerations of quantum information 
processing. The input information entered on to suitable quantum 
registers in a quantum information processing protocol is typi-
cally manipulated by introducing additional computational space 
in the form of registers of ancilla qubits. Readout of the output 
also often involves ancilla registers depending on the measurement 
model employed. NonClassical correlations including entanglement 
that get generated between the registers and all the quantum bits 
in them is recognised as a resource that, under the right circum-
stances, enables the quantum information processor to perform its 
task exponentially faster than equivalent classical entities. Readout 
of the information content in the quantum registers as classical, 
human readable, information at intermediate or final stages of the 
information processing protocol is of interest to us in the follow-
ing because such steps entail measurements typically on some of 
the registers involved in the computation. One can ask the ques-
tion whether these measurements can be made gently enough in a 
manner that while revealing the classical information output that 
is desired, they preserve the quantum resources including nonClas-
sical correlations between the registers to the maximum extent 
possible so that these resources may be used again.

We introduce a cost function that quantifies both the extent 
to which the measurements done on one subsystem can reveal 
information residing on the other subsystem using the notion of 
weak discord [9,10], as well as the disturbance to the overall state 
due to the (weak) measurement on the subsystem. Note that the 
cost function is defined only in the bipartite context which appears 
frequently in information processing protocols where we have an 
ancilla register which is read-out and a memory register that holds 
the processed quantum information. Minimising the cost function 
would mean optimal extraction of the desired classical informa-
tion from the quantum registers of the information processor with 
minimal disturbance to its state.

To quantify the extent to which weak measurements on one 
subsystem can reveal information about the other due to the classi-
cal correlations that exist between the two, we start with the weak 
quantum discord. Note that the quantity we refer to as weak quan-
tum discord following [10] is called super quantum discord in [9]
and the difference in points of view that leads to two names that 
seemingly convey opposite meanings is discussed in detail in [10]. 
In what follows, we restrict our discussion to a bipartite quantum 
system with two qubits even though it can be easily generalised 
to two registers of qubits. As in [9], we express the non-projective 
measurements that preserve the subsystem B of a quantum sys-
tem AB to the desired extent even after the act of measurement 
in terms of a two outcome POVM [16] with elements:

P x =
√

1 − tanh(x)

2
�0 +

√
1 + tanh(x)

2
�1,

P−x =
√

1 + tanh(x)

2
�0 +

√
1 − tanh(x)

2
�1, (4)

where x is a parameter that denotes the strength of the mea-
surement process and �0 and �1 are two orthogonal projectors 
forming a complete set such that �0 +�1 = 1. After the measure-
ment, the normalised post measurement state of subsystem A is 
given by:

ρA|P B±x
= TrB [(1 ⊗ P B±x)ρAB(1 ⊗ P B±x)]

TrAB [(1 ⊗ P B±x)ρAB(1 ⊗ P B±x)]
(5)

with respective probabilities

pw(±x) = TrAB [(1 ⊗ P B±x)ρAB(1 ⊗ P B±x)]. (6)

The subscript w indicates that the probabilities arise from weak 
measurements on subsystem B . In what follows, this subscript is 
used for quantities computed from the results of the weak mea-
surements and the same symbols without the subscript denotes 
quantities computed from the results of normal projective mea-
surements. The conditional entropy for subsystem A conditioned 
on the measurements on B is then

S w(A|B) = pw(x)S w(ρA|P B
x
) + pw(−x)S w(ρA|P B−x

).

Like in the case of ordinary quantum discord in (3), we can now 
define the ‘classical’ mutual information as

J w(A : B) = S(ρA) − S w(A|B)

and the weak quantum discord as:

Dw(A, B) := I(A : B) − max
{�B

j }
J w(A : B). (7)

The maximisation here is limited to one over all sets of projectors 
�B

j and not over the parameter x corresponding to the strength 
of the measurement. For large values of x, tanh x → 1 and weak 
discord reduces to normal discord since P x and P−x become a pair 
of orthogonal projectors.

Since weak measurements on subsystem B reveal less about A, 
the conditional entropy S w(A|B) is greater than S(A|B). This 
means that the weak quantum discord is greater than the normal 
discord. We can therefore characterise how well (or how badly) the 
weak measurements leverage the classical correlations that may 
exist between subsystem A and B to reveal information about A
upon measuring B by considering the quantity,

�D = Dw(A, B) − D(A, B). (8)

This quantity will be large when the weak measurements on B
reveal very little information on A because then weak quantum 
discord would essentially count all the correlations in the bipartite 



Download English Version:

https://daneshyari.com/en/article/5496687

Download Persian Version:

https://daneshyari.com/article/5496687

Daneshyari.com

https://daneshyari.com/en/article/5496687
https://daneshyari.com/article/5496687
https://daneshyari.com

