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Computing the information dimension dI of a complex network G requires covering G by a minimal 
collection of “boxes” of size s to obtain a set of probabilities, computing the entropy H(s), and quantifying 
how H(s) scales with log s. We show that to determine whether dI ≤ dB holds for G, where dB is the 
box counting dimension, it is not sufficient to determine a minimal covering for each s. We introduce the 
new notion of a maximal entropy minimal covering of G, and a corresponding new definition of dI . The 
use of maximal entropy minimal coverings in many cases enhances the ability to compute dI .

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

A network G = (N , A) is a set N of nodes connected by a set 
A of arcs. Networks are used to model a wide range of systems. 
For example, in a friendship social network [23], a node might rep-
resent a person and an arc indicates that two people are friends. 
In a co-authorship network, a node represents an author, and an 
arc connecting two authors means that they co-authored (possibly 
with other authors) at least one paper. In a communications net-
work [17,18], a node might represent a router, and an arc might 
represent a physical connection between two routers. In manu-
facturing, a node might represent a station in an assembly line, 
and an arc might represent the logical flow of a product being 
assembled as it moves from one station to the subsequent sta-
tion. Other applications of network models include human brain 
function [12] and public health [14]. The term “complex network” 
generally refers to an arbitrary network without special structure, 
as opposed to, e.g., a regular lattice or grid network. Typically, a 
complex network also refers to a network in which all arcs have 
unit cost (so the length of a shortest path between two nodes is 
the number of arcs in that path), and all arcs are undirected (so 
the arc between nodes i and j can be traversed in either direc-
tion).
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There are many measures used to characterize complex net-
works. The degree of a node is the number of arcs having that 
node as one of its endpoints, and one of the most studied mea-
sures is the average node degree [15]. The clustering coefficient 
measures, in social networking terms, the extent to which my 
friends are friends with each other. The diameter � of a network 
is defined by � ≡ max{ dist(x, y) | x, y ∈N }, where dist(x, y) is the 
length of the shortest path between nodes x and y. (We use “≡” to 
denote a definition.) Other network measures include the average 
path length [4] and the box counting dimension dB [21]. There are 
some results relating these measures, e.g., for a scale-free network 
(for which the degree distribution pk satisfies pk ∝ k−λ), the aver-
age path length scales as log N , the diameter � scales as log log N
for 2 < λ < 3, and dB and λ are not independent [3,6].

In this paper we extend Wei et al.’s analysis [24] of the in-
formation dimension dI of a complex network and compare dI
to dB . The study of dI for a network is, compared to the study 
of dB , quite recent, and specific applications of dI to real-world 
problems have not yet appeared in the literature. Since the in-
formation dimension dI of a network is a natural extension of dI
of a probability distribution [1,5,20], we begin by reviewing dI of 
a distribution. Consider a dynamical system in which motion is 
confined to some bounded set � ⊂ R

E (E-dimensional Euclidean 
space) equipped with a natural invariant measure σ . We cover �
with a set B(s) of boxes of diameter s such that σ(B j) > 0 for 
each box B j ∈ B(s) and such that for any two boxes Bi, B j ∈ B(s)
we have σ(Bi ∩ B j) = 0 (i.e., boxes may overlap, but the intersec-
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tion of each pair of boxes has measure zero). Define the probability 
p j(s) of box B j by p j(s) ≡ σ(B j)/σ (�). In practice, p j(s) is ap-
proximated by N j(s)/N , where N is the total number of observed 
points and N j(s) is the number of points in box B j [16]. Define 
the entropy H(s) by

H(s) ≡ −
∑

B j∈B(s)

p j(s) log p j(s) . (1)

Then the information dimension dI of σ is given by dI ≡
− lims→0 H(s)/ log s, assuming the limit exists [2].

Now consider an undirected, unweighted network G = (N , A). 
To define dI for G , we require a few definitions. We assume that G
is connected, meaning there is a path of arcs in A connecting any 
two nodes. Let N ≡ |N | be the number of nodes in G . The network 
B is a subnetwork of G if B is connected and B can be obtained 
from G by deleting nodes and arcs. For each positive integer s such 
that s ≥ 2, let B(s) be a collection of subnetworks (called boxes) of 
G satisfying two conditions: (i) each node in N belongs to exactly 
one subnetwork (i.e., to one box) in B(s), and (ii) the diameter of 
each box in B(s) is at most s − 1. We call B(s) a covering of G of 
size s. We do not consider B(s) for s = 1, since a box of diame-
ter 0 contains only a single node. For s ≥ � + 1, the covering B(s)
consists of a single box which is G itself. It is convenient to define 
S ≡ {s | s is integer and 2 ≤ s ≤ �}. For s ∈ S , define B(s) = |B(s)|, 
so B(s) is the number of boxes in B(s). Finally, the covering B(s) is 
minimal if B(s) is less than or equal to the number of boxes in any 
other covering of G of size s. In general, for s ∈ S we cannot eas-
ily compute a minimal covering of size s, but good heuristics are 
known, e.g., the method of Song et al. [21], which was utilized in 
[24]; see also [19], which provides a method for computing a lower 
bound on B(s). Our computational results employ the heuristic of 
[13], described in Section 5.

With these definitions, we can now explain how dI is com-
puted for G . For s ∈ S , let B(s) be a minimal covering of G . Let 
N j(s) be the number of nodes of G contained in box B j ∈ B(s). 
We obtain a set of box probabilities {p j} from B(s) by defin-
ing p j(s) ≡ N j(s)/N . We then use (1) to compute the entropy 
H(s). Roughly speaking, G has the information dimension dI if 
H(s) ∼ −dI log(s/�).

Just as we can define dI for a complex network G , we can 
also define dB for G ([13], [21]). Roughly speaking, G has the box 
counting dimension dB if the minimal covering B(s) follows the 
scaling law B(s) ∼ s−dB over some range of s. For geometric ob-
jects, the relationship between dB and dI is part of the theory of 
multifractals. A geometric multifractal is an object that cannot be 
completely described by a single fractal dimension, and instead is 
characterized by a family {Dq}, q ∈ R of generalized dimensions 
[16]. It is known that D0 = dB , that D1 = dI , and that dI ≤ dB ; 
more generally, Dq is nonincreasing in q for q ≥ 0 [8]. Generalized 
dimensions have also been considered for complex networks [22]. 
The proof that the inequality dI ≤ dB holds for a probability dis-
tribution and its support does not extend to unweighted networks, 
since (as we discuss in Section 3), for unweighted networks we 
cannot take a limit as the box size approaches zero. Moreover, Wei 
et al. [24] compute dB and dI for four networks and report that 
dI > dB for all four networks.

In this paper, we consider the definition given in [24] of dI for 
a complex network G , and recast this definition in a computation-
ally useful form. We exhibit a small network G̃ for which dI > dB . 
We show that by using a different minimal covering of G̃ we now 
obtain dI < dB . Thus to determine whether dI ≤ dB holds for G , 
it is not sufficient to determine a minimal covering for each box 
size s. A new framework is needed, and accordingly we propose 
the new notion of a maximal entropy minimal covering of G , and 
a new definition of dI for G based on maximal entropy minimal 

Table 1
Symbols and their definitions.

Symbol Definition

� Network diameter
B(s) Covering of G of size s
B(s) Cardinality of B(s)
B j(s) Box in B(s)
dB Box counting dimension
dI Information dimension
G Complex network
G(n, r) Subnetwork of G with center n and radius r
H(s) Entropy computed from B(s)
N Number of nodes in G
N j(s) Number of nodes in box B j ∈ B(s)
p j(s) Probability of box B j ∈ B(s)
S {s | s is integer and 2 ≤ s ≤ �}

coverings. We examine four larger networks and find that, with 
this new definition of dI , for three of them we have dI < dB ; for 
the fourth, by a very narrow margin we have dI > dB . Moreover, 
the use of maximal entropy minimal coverings in many cases en-
hances the ability to compute dI .

For convenience, the symbols used in this paper are summa-
rized in Table 1.

2. The information dimension of a network

The information dimension dI defined in [24, eq. (9)], for an 
unweighted, undirected network G is

dI ≡ − lim
s→0

H(s)

log s
= lim

s→0

∑
B j∈B(s) p j(s) log p j(s)

log s
. (2)

However, (2) is not computationally useful, since the distance be-
tween each pair of nodes is at least 1. Moreover, we cannot use 
the value s = 1 in (2), since then the denominator of the fraction 
is zero, while for s ≥ 2 we have H(s) > 0 and log s > 0, which 
implies −H(s)/log s < 0 and thus, from (2), dI < 0. The fact that 
s cannot become arbitrarily small was recognized by Wei et al. 
[24], who call (2) a “theoretic formulation”. Instead of (2), we 
propose in Definition 1 below a computationally useful definition 
of dI . By quantifying how H(s) scales with log(s/�), rather than 
how H(s) scales with log s, our definition has the same functional 
form as the definition of dI in [9] and [10]. We require, as is typ-
ical in studying fractal dimensions, the existence of a “regime” or 
“plateau” over which the desired scaling relation holds approxi-
mately.

Definition 1. The network G has the information dimension dI if 
for some constant c, for some positive integers LI and U I satisfying 
2 ≤ LI < U I ≤ �, and for each integer s ∈ [LI , U I ],

H(s) ≈ −dI log
( s

�

)
+ c , (3)

where H(s) is defined by (1), p j(s) = N j(s)/N for B j ∈ B(s), and 
B(s) is a minimal covering of size s. �

The following example shows that dI = 3 for a 3-dimensional 
cubic rectilinear lattice. The analysis has the obvious extension to a 
square E-dimensional rectilinear lattice, for any positive integer E .

Example 1. Let G(L) be a 3-dimensional cubic rectilinear lattice 
of L3 nodes, where L is the number of nodes on an edge of the 
square (this is just the familiar primitive Bravais lattice in three 
dimensions). The diameter � of G(L) is 3(L − 1). Suppose L = 2K

for a given positive integer K . For M = 1, 2, · · · , K − 1, we can 
cover G(2K ) using copies of G(2M). The number of copies required 
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