ARTICLE IN PRESS

Physics Letters A ••• (••••) •••-•••

Contents lists available at ScienceDirect

Physics Letters A

www.elsevier.com/locate/pla

Maximal entropy coverings and the information dimension of a complex network

Eric Rosenberg

AT&T Labs, Middletown, NJ 07748, United States

ARTICLE INFO

Article history: Received 1 October 2016 Received in revised form 5 December 2016 Accepted 7 December 2016 Available online xxxx Communicated by C.R. Doering

Keywords: Information dimension Box counting dimension Entropy Networks Fractals Multifractal analysis

1. Introduction

A network $\mathcal{G} = (\mathcal{N}, \mathcal{A})$ is a set \mathcal{N} of nodes connected by a set \mathcal{A} of arcs. Networks are used to model a wide range of systems. For example, in a friendship social network [23], a node might represent a person and an arc indicates that two people are friends. In a co-authorship network, a node represents an author, and an arc connecting two authors means that they co-authored (possibly with other authors) at least one paper. In a communications network [17,18], a node might represent a router, and an arc might represent a physical connection between two routers. In manufacturing, a node might represent a station in an assembly line, and an arc might represent the logical flow of a product being assembled as it moves from one station to the subsequent station. Other applications of network models include human brain function [12] and public health [14]. The term "complex network" generally refers to an arbitrary network without special structure, as opposed to, e.g., a regular lattice or grid network. Typically, a complex network also refers to a network in which all arcs have unit cost (so the length of a shortest path between two nodes is the number of arcs in that path), and all arcs are undirected (so the arc between nodes i and j can be traversed in either direction).

http://dx.doi.org/10.1016/j.physleta.2016.12.015 0375-9601/© 2016 Elsevier B.V. All rights reserved.

ABSTRACT

Computing the information dimension d_1 of a complex network \mathcal{G} requires covering \mathcal{G} by a minimal collection of "boxes" of size *s* to obtain a set of probabilities, computing the entropy H(s), and quantifying how H(s) scales with log *s*. We show that to determine whether $d_1 \leq d_B$ holds for \mathcal{G} , where d_B is the box counting dimension, it is not sufficient to determine a minimal covering for each *s*. We introduce the new notion of a maximal entropy minimal covering of \mathcal{G} , and a corresponding new definition of d_1 . The use of maximal entropy minimal coverings in many cases enhances the ability to compute d_1 .

© 2016 Elsevier B.V. All rights reserved.

There are many measures used to characterize complex networks. The degree of a node is the number of arcs having that node as one of its endpoints, and one of the most studied measures is the average node degree [15]. The clustering coefficient measures, in social networking terms, the extent to which my friends are friends with each other. The diameter Δ of a network is defined by $\Delta \equiv \max\{dist(x, y) \mid x, y \in \mathcal{N}\}$, where dist(x, y) is the length of the shortest path between nodes *x* and *y*. (We use " \equiv " to denote a definition.) Other network measures include the average path length [4] and the box counting dimension d_B [21]. There are some results relating these measures, e.g., for a scale-free network (for which the degree distribution p_k satisfies $p_k \propto k^{-\lambda}$), the average path length scales as $\log N$, the diameter Δ scales as $\log\log N$ for $2 < \lambda < 3$, and d_B and λ are not independent [3,6].

In this paper we extend Wei et al.'s analysis [24] of the information dimension d_I of a complex network and compare d_I to d_B . The study of d_I for a network is, compared to the study of d_B , quite recent, and specific applications of d_I to real-world problems have not yet appeared in the literature. Since the information dimension d_I of a network is a natural extension of d_I of a probability distribution [1,5,20], we begin by reviewing d_I of a distribution. Consider a dynamical system in which motion is confined to some bounded set $\Omega \subset \mathbb{R}^E$ (*E*-dimensional Euclidean space) equipped with a natural invariant measure σ . We cover Ω with a set $\mathcal{B}(s)$ of boxes of diameter *s* such that $\sigma(B_j) > 0$ for each box $B_j \in \mathcal{B}(s)$ and such that for any two boxes $B_i, B_j \in \mathcal{B}(s)$ we have $\sigma(B_i \cap B_j) = 0$ (i.e., boxes may overlap, but the intersec-

E-mail address: ericr@att.com.

2

ARTICLE IN PRESS

tion of each pair of boxes has measure zero). Define the probability $p_j(s)$ of box B_j by $p_j(s) \equiv \sigma(B_j)/\sigma(\Omega)$. In practice, $p_j(s)$ is approximated by $N_j(s)/N$, where N is the total number of observed points and $N_j(s)$ is the number of points in box B_j [16]. Define the entropy H(s) by

$$H(s) \equiv -\sum_{B_j \in \mathcal{B}(s)} p_j(s) \log p_j(s) .$$
⁽¹⁾

Then the information dimension d_I of σ is given by $d_I \equiv -\lim_{s\to 0} H(s)/\log s$, assuming the limit exists [2].

Now consider an undirected, unweighted network $\mathcal{G} = (\mathcal{N}, \mathcal{A})$. To define d_I for \mathcal{G} , we require a few definitions. We assume that \mathcal{G} is connected, meaning there is a path of arcs in A connecting any two nodes. Let $N \equiv |\mathcal{N}|$ be the number of nodes in \mathcal{G} . The network B is a subnetwork of G if B is connected and B can be obtained from G by deleting nodes and arcs. For each positive integer s such that $s \ge 2$, let $\mathcal{B}(s)$ be a collection of subnetworks (called *boxes*) of \mathcal{G} satisfying two conditions: (i) each node in \mathcal{N} belongs to exactly one subnetwork (i.e., to one box) in $\mathcal{B}(s)$, and (ii) the diameter of each box in $\mathcal{B}(s)$ is at most s - 1. We call $\mathcal{B}(s)$ a covering of \mathcal{G} of size s. We do not consider $\mathcal{B}(s)$ for s = 1, since a box of diameter 0 contains only a single node. For $s \ge \Delta + 1$, the covering $\mathcal{B}(s)$ consists of a single box which is G itself. It is convenient to define $S \equiv \{s \mid s \text{ is integer and } 2 \le s \le \Delta\}$. For $s \in S$, define $B(s) = |\mathcal{B}(s)|$, so B(s) is the number of boxes in $\mathcal{B}(s)$. Finally, the covering $\mathcal{B}(s)$ is *minimal* if B(s) is less than or equal to the number of boxes in any other covering of G of size s. In general, for $s \in S$ we cannot easily compute a minimal covering of size s, but good heuristics are known, e.g., the method of Song et al. [21], which was utilized in [24]; see also [19], which provides a method for computing a lower bound on B(s). Our computational results employ the heuristic of [13], described in Section 5.

With these definitions, we can now explain how d_I is computed for \mathcal{G} . For $s \in S$, let $\mathcal{B}(s)$ be a minimal covering of \mathcal{G} . Let $N_j(s)$ be the number of nodes of \mathcal{G} contained in box $B_j \in \mathcal{B}(s)$. We obtain a set of box probabilities $\{p_j\}$ from $\mathcal{B}(s)$ by defining $p_j(s) \equiv N_j(s)/N$. We then use (1) to compute the entropy H(s). Roughly speaking, \mathcal{G} has the information dimension d_I if $H(s) \sim -d_I \log(s/\Delta)$.

Just as we can define d_1 for a complex network \mathcal{G} , we can also define d_B for \mathcal{G} ([13], [21]). Roughly speaking, \mathcal{G} has the box counting dimension d_B if the minimal covering $\mathcal{B}(s)$ follows the scaling law $B(s) \sim s^{-d_B}$ over some range of s. For geometric objects, the relationship between d_B and d_I is part of the theory of multifractals. A geometric multifractal is an object that cannot be completely described by a single fractal dimension, and instead is characterized by a family $\{D_q\}, q \in \mathbb{R}$ of generalized dimensions [16]. It is known that $D_0 = d_B$, that $D_1 = d_I$, and that $d_I \le d_B$; more generally, D_q is nonincreasing in q for $q \ge 0$ [8]. Generalized dimensions have also been considered for complex networks [22]. The proof that the inequality $d_I \leq d_B$ holds for a probability distribution and its support does not extend to unweighted networks, since (as we discuss in Section 3), for unweighted networks we cannot take a limit as the box size approaches zero. Moreover, Wei et al. [24] compute d_B and d_I for four networks and report that $d_I > d_B$ for all four networks.

In this paper, we consider the definition given in [24] of d_I for a complex network \mathcal{G} , and recast this definition in a computationally useful form. We exhibit a small network $\tilde{\mathcal{G}}$ for which $d_I > d_B$. We show that by using a different minimal covering of $\tilde{\mathcal{G}}$ we now obtain $d_I < d_B$. Thus to determine whether $d_I \leq d_B$ holds for \mathcal{G} , it is not sufficient to determine a minimal covering for each box size *s*. A new framework is needed, and accordingly we propose the new notion of a maximal entropy minimal covering of \mathcal{G} , and a new definition of d_I for \mathcal{G} based on maximal entropy minimal

Table 1Symbols and their definitions.

Symbol	Definition
Δ	Network diameter
$\mathcal{B}(s)$	Covering of \mathcal{G} of size s
B(s)	Cardinality of $\mathcal{B}(s)$
$B_i(s)$	Box in $\mathcal{B}(s)$
d_B	Box counting dimension
d _I	Information dimension
\mathcal{G}	Complex network
$\mathcal{G}(n,r)$	Subnetwork of \mathcal{G} with center <i>n</i> and radius <i>r</i>
H(s)	Entropy computed from $\mathcal{B}(s)$
Ν	Number of nodes in \mathcal{G}
$N_i(s)$	Number of nodes in box $B_i \in \mathcal{B}(s)$
$p_j(s)$	Probability of box $B_i \in \mathcal{B}(s)$
S	$\{s \mid s \text{ is integer and } 2 \leq s \leq \Delta\}$

coverings. We examine four larger networks and find that, with this new definition of d_I , for three of them we have $d_I < d_B$; for the fourth, by a very narrow margin we have $d_I > d_B$. Moreover, the use of maximal entropy minimal coverings in many cases enhances the ability to compute d_I .

For convenience, the symbols used in this paper are summarized in Table 1.

2. The information dimension of a network

The information dimension d_l defined in [24, eq. (9)], for an unweighted, undirected network G is

$$d_{I} \equiv -\lim_{s \to 0} \frac{H(s)}{\log s} = \lim_{s \to 0} \frac{\sum_{B_{j} \in \mathcal{B}(s)} p_{j}(s) \log p_{j}(s)}{\log s}.$$
 (2)

However, (2) is not computationally useful, since the distance between each pair of nodes is at least 1. Moreover, we cannot use the value s = 1 in (2), since then the denominator of the fraction is zero, while for $s \ge 2$ we have H(s) > 0 and $\log s > 0$, which implies $-H(s)/\log s < 0$ and thus, from (2), $d_I < 0$. The fact that s cannot become arbitrarily small was recognized by Wei et al. [24], who call (2) a "theoretic formulation". Instead of (2), we propose in Definition 1 below a computationally useful definition of d_I . By quantifying how H(s) scales with $\log(s/\Delta)$, rather than how H(s) scales with $\log s$, our definition has the same functional form as the definition of d_I in [9] and [10]. We require, as is typical in studying fractal dimensions, the existence of a "regime" or "plateau" over which the desired scaling relation holds approximately.

Definition 1. The network \mathcal{G} has the information dimension d_I if for some constant c, for some positive integers L_I and U_I satisfying $2 \leq L_I < U_I \leq \Delta$, and for each integer $s \in [L_I, U_I]$,

$$H(s) \approx -d_I \log\left(\frac{s}{\Delta}\right) + c, \qquad (3)$$

where H(s) is defined by (1), $p_j(s) = N_j(s)/N$ for $B_j \in \mathcal{B}(s)$, and $\mathcal{B}(s)$ is a minimal covering of size s. \Box

The following example shows that $d_I = 3$ for a 3-dimensional cubic rectilinear lattice. The analysis has the obvious extension to a square *E*-dimensional rectilinear lattice, for any positive integer *E*.

Example 1. Let $\mathcal{G}(L)$ be a 3-dimensional cubic rectilinear lattice of L^3 nodes, where L is the number of nodes on an edge of the square (this is just the familiar primitive Bravais lattice in three dimensions). The diameter Δ of $\mathcal{G}(L)$ is 3(L-1). Suppose $L = 2^K$ for a given positive integer K. For $M = 1, 2, \dots, K - 1$, we can cover $\mathcal{G}(2^K)$ using copies of $\mathcal{G}(2^M)$. The number of copies required

Please cite this article in press as: E. Rosenberg, Maximal entropy coverings and the information dimension of a complex network, Phys. Lett. A (2017), http://dx.doi.org/10.1016/j.physleta.2016.12.015

Download English Version:

https://daneshyari.com/en/article/5496710

Download Persian Version:

https://daneshyari.com/article/5496710

Daneshyari.com