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We explore the reduced relative Shannon information entropies S R for a quasiperiodic lattice model 
with nearest- and next-nearest-neighbor hopping, where an irrational number is in the mathematical 
expression of incommensurate on-site potentials. Based on S R , we respectively unveil the phase diagrams 
for two irrationalities, i.e., the inverse bronze mean and the inverse golden mean. The corresponding 
phase diagrams include regions of purely localized phase, purely delocalized phase, pure critical phase, 
and regions with mobility edges. The boundaries of different regions depend on the values of irrational 
number. These studies present a more complete picture than existing works.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Anderson localization is an important and fundamental con-
cept in condensed matter physics and disordered systems [1–3]. 
For electronic systems, mobility edges (MEs), which separate lo-
calized states from delocalized ones, draw a lot of attentions. 
For examples, MEs have been found in three-dimensional uncor-
related random disorder potential systems [1,2] and some one-
dimensional (1D) disorder systems, such as random-dimer po-
tential models [4] and long-range correlated disordered potential 
ones [5]. Very recently, Ganeshan, Pixley and Das Sarma have pro-
posed a family of deterministic (i.e., no disorder) nearest-neighbor 
tight-binding models with exact mobility edges [6]. Some other 
deterministic potential models also have MEs, for instance, the 
Soukoulis–Economou model [7] and the slowly varying potential 
ones [8].

The Hamiltonian in all the above mentioned lattice models 
only includes hopping integral between nearest-neighbor sites. In 
contrast to them, Johansson and Riklund have considered both 
the nearest-neighbor and the next-nearest-neighbor hopping in-
tegral and proposed a quasiperiodic lattice model [9], which is a 
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generalization of the Aubry–André model [10] and the Soukoulis–
Economou model [7]. The incommensurate on-site potential in 
the model is V [cos(2παn) + W cos(4παn)], where V character-
izes the potential strength, W is the weight of the second co-
sine function and α is an irrational number. The nearest- and 
the next-nearest-neighbor hopping integrals are t and u, respec-
tively. At a specific choice of parameters, i.e., the inverse bronze 
mean αb = (

√
13 − 3)/2 and W = u = 1/3, Johansson and Rik-

lund find that all states are delocalized, critical or localized, 
which depends on potential strength V . They draw a conclu-
sion that there are no MEs in the model. On the contrary, very 
recently Sun et al. have studied the same model at the same 
specific chosen parameters except α (the inverse golden mean 
αg = (

√
5 − 1)/2 is chosen) [11]. They find MEs. Subsequently, 

it brings a heated debate on whether there exist MEs in the 
model [12,13]. It is interesting that what the nature of states in 
the model, i.e., whether states are delocalized, critical or local-
ized.

In contrast to existing works [9,11–13], we will illuminate the 
W -dependence and u-dependence results. We will calculate the 
Shannon information entropies to understand Anderson localiza-
tion in the interesting model. The rest of the paper is organized 
as follows. We first introduce the model and Shannon information 
entropy in Section 2. Then, we provide the numerical results in 
Section 3. At last, we present our discussions and conclusions in 
Section 4.
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2. Models and Shannon information entropy

2.1. One-dimensional quasiperiodic lattice models with nearest- and 
next-nearest-neighbor hopping

The model is a 1D tight-binding lattice systems, which can be 
described by [9]

V [cos(2παn) + W cos(4παn)]cn

+ t(cn+1 + cn−1) + u(cn+2 + cn−2) = Ecn. (1)

Here, V , W , t and u have been explained in Introduction. In addi-
tion, E is the eigenenergy, and cn is the amplitude of eigenstate at 
the nth lattice site. If a transformation to reciprocal space is per-
formed by

cn =
∞∑

−∞
gm exp(imn2πα), (2)

Eq. (1) is transformed to

2t[cos(2παm) + u

t
cos(4παm)]gm + V

2
(gm+1 + gm−1)

+ V W

2
(gm+2 + gm−2) = Egm. (3)

If we set V ′ = 4tt′/V , W ′ = u/t , u′ = W t′ and E ′ = 2Et′/V , Eq. (3)
becomes

V ′[cos(2παm) + W ′ cos(4παm)]gm + t′(gm+1 + gm−1)

+ u′(gm+2 + gm−2) = E ′gm. (4)

Obviously, Eq. (1) and Eq. (4) are dual to each other. The cor-
responding duality transformation [Eq. (2)] is a simple Fourier 
transformation, which maps delocalized (localized) states in posi-
tion space to localized (delocalized) ones in momentum space. In 
other words, if the states determined by Eq. (1) are delocalized, 
the corresponding states by Eq. (4) are localized, and vice versa. 
Specifically, the model is self-dual at the condition that

V = 2t, W = u/t. (5)

2.2. Shannon information entropy

For the sake of convenience, |β〉 denotes the eigenstate that 
determined by Eq. (1) and Eβ denotes the corresponding eigenen-
ergy. The position–space Shannon information entropy for |β〉 is 
defined by [14]

Sx = −
N∑

n=1

|cn|2 ln (|cn|2). (6)

Similarly, the momentum–space Shannon information entropy is

S p = −
N∑

k=1

|ck|2 ln (|ck|2). (7)

Here ck = 1√
N

N∑
n=1

exp(−i2πnk/N)cn , k = −[ N
2 ], ..., [ N−1

2 ], where 

i2 = −1 and [Z ] is the integer part of Z . We define a reduced 
relative Shannon entropy

S R = (Sx − S p)/(Sx + S p). (8)

We have found that S R > 0 and S R < 0 for delocalized states and 
localized states, respectively [14]. The larger S R , the more delo-
calized states are, while the smaller S R , the more localized states 
are. It is a simple criterion to distinguish delocalized, localized and 
critical states from each other.

Fig. 1. (Color online) For the inverse bronze mean, the reduced relative Shannon 
entropy S R versus eigenenergies Eβ at lattice sizes N = B7, B8 and B9, respectively. 
Here, W = u = 1/5 and V = 1.0. The dash line is for the function S R = 0.

3. Numerical results

In calculations, we directly diagonalize Eq. (1) with the periodic 
boundary condition at finite system sizes and obtain all eigenen-
ergy and corresponding eigenstates. From Eqs. (6)–(8), we obtain 
the reduced relative Shannon entropy S R . Without loss of gener-
ality, we choose the nearest-neighbor hopping integral t in Eq. (1)
as a unit of energy. First, as examples, we study the state local-
ization properties at two specific choices of parameters. Then, we 
give the phase diagram. As customary in the context of quasiperi-
odic system, the inverse bronze mean αb can be approximated 
by the ratio of successive numbers: Bm = 3Bm−1 + Bm−2 with 
B0 = B1 = 1. For examples, B7 = 1549, B8 = 5116 and B9 = 16897. 
In this way, choosing αb = Bm−1/Bm and lattice size N = Bm , we 
can obtain the periodic approximant for the quasiperiodic poten-
tial. Similarly, the inverse golden mean αg can be approximated by 
the ratio of successive Fibonacci numbers: Fm = Fm−1 + Fm−2 with 
F0 = F1 = 1.

3.1. State localization properties at specific parameters

At the case that the irrational number is the inverse bronze 
mean [αb = (

√
13 − 3)/2] and W = u = 1/3, there are no MEs in 

the model [9]. As a different example, we choose W = u = 1/5 as 
well as V = 1.0. The reduced relative Shannon entropy S R versus 
eigenenergies Eβ is plotted in Fig. 1 at N = B7, B8 and B9, respec-
tively. It shows that all S R > 0 for eigenstates with Eβ > −0.9053. 
The larger the lattice size N , the larger S R are. It means that these 
states are delocalized. At the same time, all S R < 0 for eigenstates 
with Eβ < −1.7912. The larger the lattice size N , the smaller S R
are. It means that these states are localized. Therefore, there exists 
a ME between Eβ = −1.7912 and Eβ = −0.9053.

As a second example, we choose W = u = 1/5 as well as 
V = 2.0. The corresponding reduced relative Shannon entropy S R
versus eigenenergies Eβ is plotted in Fig. 2. It shows that S R may 
be positive or negative. All the absolute value of S R , denoted by 
|S R|, are smaller than 1.0 × 10−8, 3.0 × 10−7 and 2.5 × 10−5 at 
N = B7, B8 and B9, respectively. Comparing with |S R| in Fig. 1, 
these |S R| are relatively smaller and almost near zeros. At the 
same time, Fig. 2 shows that there are no energy-bands for which 
all S R > 0 or all S R < 0, which is different from that shown in 
Fig. 1 for delocalized states and localized ones. Therefore, these 
states are critical. In fact, at λ = 2.0 and all others W = u, the 
variations of S R with Eβ are similar as that in Fig. 2, thus all these 
states are critical. It agrees with that the model is self-dual at the 
parameters.
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