
Physics Letters A 381 (2017) 592–596

Contents lists available at ScienceDirect

Physics Letters A

www.elsevier.com/locate/pla

Superconducting qubit in a nonstationary transmission line cavity: 

Parametric excitation, periodic pumping, and energy dissipation

A.A. Zhukov a,b, D.S. Shapiro a,c,d,e,∗, S.V. Remizov a,c, W.V. Pogosov a,d,f, Yu.E. Lozovik a,b,d,g

a N.L. Dukhov All-Russia Research Institute of Automatics, 127055 Moscow, Russia
b National Research Nuclear University (MEPhI), 115409 Moscow, Russia
c V.A. Kotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 125009 Moscow, Russia
d Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700, Russia
e National University of Science and Technology MISIS, 119049 Moscow, Russia
f Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, 125412 Moscow, Russia
g Institute of Spectroscopy, Russian Academy of Sciences, 142190 Moscow Region, Troitsk, Russia

a r t i c l e i n f o a b s t r a c t

Article history:
Received 22 August 2016
Received in revised form 22 November 2016
Accepted 14 December 2016
Available online 19 December 2016
Communicated by P.R. Holland

Keywords:
Cavity and circuit QED
Superconducting qubits
Non-stationary phenomena
Dissipative system
Counter-rotating wave processes
Dynamical Lamb effect

We consider a superconducting qubit coupled to the nonstationary transmission line cavity with 
modulated frequency taking into account energy dissipation. Previously, it was demonstrated that in the 
case of a single nonadiabatical modulation of a cavity frequency there are two channels of a two-level 
system excitation which are due to the absorption of Casimir photons and due to the counterrotating 
wave processes responsible for the dynamical Lamb effect. We show that the parametric periodical 
modulation of the resonator frequency can increase dramatically the excitation probability. Remarkably, 
counterrotating wave processes under such a modulation start to play an important role even in the 
resonant regime. Our predictions can be used to control qubit-resonator quantum states as well as to 
study experimentally different channels of a parametric qubit excitation.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Quantum electrodynamics (QED) of superconducting circuits is 
one of fast and intensively developing fields of a modern physics. 
The interest to superconducting circuits, which consist of Joseph-
son qubits and transmission line cavities [1], is heated by the 
possibility of implementation of quantum computation [2], obser-
vation of new phenomena of quantum optics in GHz frequency 
domain [3], as well as an engineering of sub-wavelength quan-
tum metamaterials [4]. An outstanding feature of superconduct-
ing circuits is that their parameters are tunable in situ: excitation 
frequencies of qubits can be varied externally, while both the fre-
quency of fundamental mode of a resonator and qubit-resonator 
coupling energy can be modulated in GHz range by means of aux-
iliary SQUIDs embedded in the circuit’s architecture or using more 
sophisticated methods. Particularly, superconducting quantum cir-
cuits can be used as a unique platform to investigate nonstationary 
cavity QED phenomena, such as the dynamical Casimir effect [5].
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In the series of papers [6,7] dealing with optical systems there 
was considered a behavior of a two-level atom in a nonstation-
ary high-Q cavity, which experiences a single nonadiabatic change 
of its frequency. One of the channels of a parametric atom excita-
tion in this situation is through a nonadiabatic change of its Lamb 
shift, which was termed the “dynamical Lamb effect” [7]. It is pro-
duced by counterrotating wave processes leading to a modulation 
of the atom’s dressing by virtual photons and can be considered 
as the new effect in the nonstationary cavity QED. There is an-
other mechanism of atom excitation in this system which is due 
to the absorption of photons generated by the cavity dynamical 
Casimir effect [7]. The absorption is governed by resonant (Jaynes–
Cummings) processes. This mechanism is, in general, dominant for 
the case of nonstationary cavity and therefore it “screens” the dy-
namical Lamb effect.

In our recent papers [8] (see also Ref. [9]), we suggested an idea 
how to make the dynamical Lamb effect dominant. It is attractive 
to use a superconducting system which consists of a stationary
resonator having a tunable coupling with the qubit. No Casimir 
photons are generated in this case, while the only one channel of 
qubit excitation is through the dynamical Lamb effect. Although a 
proposed idea allows for the observation of this effect, its unam-
biguous experimental realization may be not so easy.

http://dx.doi.org/10.1016/j.physleta.2016.12.033
0375-9601/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.physleta.2016.12.033
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/pla
mailto:shapiro.dima@gmail.com
http://dx.doi.org/10.1016/j.physleta.2016.12.033
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physleta.2016.12.033&domain=pdf


A.A. Zhukov et al. / Physics Letters A 381 (2017) 592–596 593

Fig. 1. (Color online.) Equivalent electric superconducting circuits of the systems 
under consideration. Both setups (a, b) consist of: 1) auxiliary SQUID, 2) single 
mode cavity, represented as LC -contour (red dashed), and 3) flux qubit (a) or trans-
mon (b). Crosses stand for Josephson junctions with the sizes being related to the 
values of Josephson energies. SQUID’s loop is subjected to the rapidly tunable mag-
netic flux �(t). The interaction between the electromagnetic field in the cavity and 
qubits can be organized via (a) inductive coupling in case of the flux qubit or (b) via 
capacitive coupling in case of the transmon.

Therefore, it is of interest to come back to a simpler scheme 
with variable resonator frequency, which is more straightforward 
to implement. In this article, we concentrate on the effect of a pe-
riodic modulation of the cavity mode frequency. We show that it 
provides a tool to distinguish between different channels of qubit 
excitation even near the resonance as well as to enhance the effect 
as a whole. We also take into account both energy dissipation and 
pure dephasing, which always exist in real systems and are able 
to suppress quantum effects. In contrast to most of other stud-
ies, we mainly focus on the analysis of different mechanisms of a 
parametric qubit excitation, i.e., due to rotating wave processes and 
counterrotating wave processes and under the variation of only the 
resonator frequency.

2. System

The effect under consideration can be implemented in tun-
able superconducting circuits, see, e.g., Ref. [10]. As it is shown in 
Fig. 1 (a, b), the basic components of possible setups involve sin-
gle mode cavity (superconducting coplanar waveguide), which has 
auxiliary SQUID embedded into one of its ends, and an artificial 
macroscopic atom, such as flux qubit (a) or transmon (b), cou-
pled inductively or capacitively to the cavity. Equivalent electric 
circuit of the resonator is associated with LC-contour inside the 
red dashed sector in Fig. 1. Alternating external flux �(t), thread-
ing the SQUID loop, provides an effective modulation of the res-
onator inductance at the desired frequency. As a consequence, such 
a modulation via SQUID plays a role of a non-stationary boundary 
conditions for the electromagnetic field in the cavity. Eventually, 
this results in modulation of the photon mode frequency.

3. Model

The full non-stationary Hamiltonian of the system under con-
sideration can be represented as

H(t) = H0(t) + HCas(t) + V . (1)

The Hamiltonian of non-interacting qubit and cavity is given by

H0(t) = h̄ω(t)a†a + 1

2
ε(1 + σ3), (2)

where a† and a are secondary quantized operators of photon 
creation and annihilation in the transmission line cavity of non-

stationary frequency ω(t). Pauli operators σ3 = 2σ+σ− − 1, σ+ , 
σ− act in the space of qubit excited and ground states. The non-
stationary term HCas(t) in (1) is responsible for the dynamical 
Casimir effect, i.e., the photon generation from vacuum [11–14]

HCas(t) = ih̄
∂tω(t)

4ω(t)
(a2 − a+2). (3)

The last term V in (1) describes a qubit-cavity interaction

V = g(a + a†)(σ− + σ+), (4)

where (a + a†) and (σ− + σ+) can be associated with the elec-
tric field and dipole moment, respectively, while g is the cou-
pling energy. This interaction term can be divided into two parts 
V = V 1 + V 2, where V 1 = g(aσ+ + a†σ−) yields the well known 
rotating wave approximation (RWA) or Jaynes–Cummings model, 
provided V 2 is dropped, while V 2 is given by V 2 = g(a†σ+ +aσ−). 
RWA terms conserve the total excitations number, whereas coun-
terrotating wave contributions produce and annihilate pairs of ex-
citations.

As it was shown in [7], in the case of a single instantaneous 
switching of cavity frequency ω from ω1 to ω2, the qubit excita-
tion probability at t → ∞ due to the Jaynes–Cummings processes 
(absorption of Casimir photons generated by HCas(t)) strongly de-
pends on ω2 as

w(C)
e � g2

(ε − ω2)2

(ω2 − ω1)
2

4ω1ω2
, (5)

when |ε − ω2| � g . It turns out that in the opposite case |ε −
ω2| � g the maximum value w(C)

e ∼ (ω2 − ω1)
2/ω2

2 is achieved in 
the resonance between ε and ω2 [7]. Note that this last value is 
independent on g and, in the case of a weak modulation is small.

The qubit excitation probability due to the counterrotating wave 
processes, i.e., the dynamical Lamb effect is not so strongly depen-
dent on ω2 [7]:

w(L)
e � g2 (ω2 − ω1)

2

(ω2 + ε)2(ω1 + ε)2
, (6)

which in principle allows for the separation of the two effects: 
w(L)

e becomes of the order of w(C)
e at large detuning |ε−ω2| ∼ ω2. 

But w(L)
e is small as ∼ (ω2 − ω1)

2 g2/ω4
2. At g/ω2 � 1, this quan-

tity is much smaller than the maximum value of w(C)
e attained 

near the resonance, where the excitation probability is controlled 
by Jaynes–Cummings processes. These circumstances make it prob-
lematic to probe the mechanism of qubit excitation linked to coun-
terrotating terms.

Now we consider a periodic modulation of resonator frequency

ω(t) = ω0 + d cos(�t). (7)

There appear several controlling parameters: the time-averaged 
detuning 	 = ε − ω0, modulation frequency �, and its amplitude 
d. We hereafter concentrate on the limits of a small-amplitude 
variations, d � ω0, and a weak qubit-cavity coupling, g � ω0. We 
then address system’s dynamics by solving numerically the Lind-
blad equation

∂tρ(t) − �[ρ(t)] = −i[H(t),ρ(t)], (8)

where ρ(t) is a density matrix of qubit and photon mode. Dis-
sipation in the cavity of the rate κ and qubit decoherence γ
are described through the matrix �[ρ] = κ(aρa† − {a†a, ρ}/2) +
γ (σ−ρσ+ − {σ+σ−, ρ}/2) + γϕ(σzρσz − ρ). In superconducting 
qubits the pure decoherence rate γϕ is typically of the same or-
der as relaxation γ . Both quantities are significantly larger than 
the relaxation rate of a cavity, γ � κ .
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