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Dynamics arising in the Hindmarsh–Rose model are considered from a novel perspective. We study 
qualitative changes that occur as the time scale of the slow variable increases taking the system far from 
the slow-fast scenario. We see how the structure of spike-adding still persists far from the singular case 
but the geometry of the bifurcations changes notably. Particular attention is paid to changes in the shape 
of the homoclinic bifurcation curves and the disappearance of Inclination-Flip codimension-two points. 
These transformations seem to be linked to the way in which the spike-adding takes place, the changing 
from fold/hom to fold/Hopf bursting behavior and also with the way in which the chaotic regions evolve 
as the time scale of the slow variable increases.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

It is out of discussion that to understand such a complex mech-
anism as the brain, and in general any living neural network, it is 
compulsory to know first the working of its basic building blocks: 
the neurons. Since the seminal contribution of Hodgkin and Hux-
ley [1], neurons are commonly viewed as dynamical systems. Ele-
ments of bifurcation theory play an essential role in this context 
and help to understand neuronal activity.

The range of activity types that a neuron can exhibit is quite 
broad and includes quiescence (the state of not firing), tonic spik-
ing, bursting and irregular (or chaotic) spiking. Each of these be-
haviors has its counterpart in the language of dynamical systems, 
either as stable periodic or chaotic orbits. Even the process of 
spike-adding can be linked to specific codimension-two homoclinic 
bifurcations (Orbit-Flip and Inclination-Flip points) and also to the 
so called canard explosions [2,3].

Hindmarsh–Rose (HR in the sequel) equations⎧⎨
⎩

x′ = y − ax3 + bx2 + I − z,
y′ = c − dx2 − y,

z′ = ε(s(x − x0) − z)
(1)

were introduced in [4] as a reduction of the Hodgkin–Huxley 
model. The HR model is simpler but it captures the main dynam-
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ical behaviors which are displayed by real neurons: quiescence, 
tonic spiking, bursting and irregular spiking (see [5–13]). The sys-
tem possesses two time scales: x and y evolve as fast variables 
while z does it as a slow variable (so, it is a slow-fast dynamical 
system). The x variable should be treated as the voltage across the 
cell membrane, while the y and z variables would describe kinet-
ics of some ionic currents. The small parameter ε controls the time 
scale of z and x0 controls the rest potential of the system.

Different choices of the parameters have been considered in the 
literature (see [11] for an excellent review of the dynamics of the 
model). Following [2,11,12] we assume that

a = 1, c = 1, d = 5, s = 4, and x0 = −1.6. (2)

With this choice, (1) becomes a family dependent only on param-
eters (b, I, ε). These parameters will be our primary bifurcation 
parameters.

In this paper we pay attention to the changes in the global pic-
ture as ε varies. From a realistic point of view it is clear that only 
small values of ε are of interest: typically ε � 1. We include a 
preliminary study about the singular limit of some relevant bifur-
cations. Nevertheless, in contrast with other approaches, we want 
to emphasize that the understanding of the bifurcation diagram for 
higher values of the slow time scale should be a crucial ingredient 
to get a whole picture of the dynamics and also it helps to under-
stand what happens for ε < 1 (and not only ε � 1).

The article is arranged as follows: In Section 2 we compute 
the singular limit of the Hopf bifurcations as ε ↘ 0. Moreover, we 
show with numerical evidences that a singular limit also exists for 
the homoclinic bifurcation curves. We compare our results with 

http://dx.doi.org/10.1016/j.physleta.2016.12.027
0375-9601/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.physleta.2016.12.027
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/pla
mailto:rbarrio@unizar.es
mailto:mesa@uniovi.es
mailto:lpcuadrado@gmail.com
http://dx.doi.org/10.1016/j.physleta.2016.12.027
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physleta.2016.12.027&domain=pdf


598 R. Barrio et al. / Physics Letters A 381 (2017) 597–603

those in [14–16] where similar singular limits were studied in a 
different model. In section 3 we investigate how the homoclinic 
bifurcation curves change as ε increases from small (slow-fast dy-
namics) to large values. We will see that, although the geometry 
of the bifurcation curves changes rapidly, many common features 
seem to persist. Section 4 is devoted to show how the global pic-
ture of spike-adding, bursting and chaotic behavior, bounded inside 
a loop formed by the Hopf bifurcation curves, evolves with ε. We 
will describe how this evolution seems to be linked to the changes 
along the homoclinic bifurcation curves. A summary is presented 
in Section 5. All continuations of bifurcation curves have been done 
with the free software AUTO [17,18].

2. Singular limits: Hopf bifurcation and homoclinic bifurcation

It easily follows (fixing all parameters but (b, I, ε)) that the 
equilibrium points of (1) are given by

y = 1 − 5x2, z = 4(x + 1.6), (3)

with x any real root of

P (x) = I − 5.4 − 4x + (b − 5)x2 − x3. (4)

The Jacobian at a given equilibrium point is given by⎛
⎝

−3x2 + 2bx 1 −1
−10x −1 0

4ε 0 −ε

⎞
⎠ , (5)

with characteristic polynomial

Q (λ) = λ3 + q2(x,b, ε)λ2 + q1(x,b, ε)λ + q0(x,b, ε),

where

q2(x,b, ε) = 3x2 − 2bx + 1 + ε,

q1(x,b, ε) = 3x2 + (10 − 2b)x + ε(3x2 − 2bx + 5),

q0(x,b, ε) = ε
(
3x2 + (10 − 2b)x + 4

)
.

Necessary conditions for an Andronov–Hopf (AH) bifurcation 
are

P (x) = 0
C(x,b, ε) = q2(x,b, ε)q1(x,b, ε) − q0(x,b, ε) = 0
q1(x,b, ε) > 0.

The above conditions characterize a collection of surfaces on the 
space of parameters whose limit when ε ↘ 0 is given by

I − 5.4 − 4x + (b − 5)x2 − x3 = 0, (6)

(3x2 − 2bx + 1)
(
3x2 + (10 − 2b)x

) = 0, (7)

3x2 + (10 − 2b)x ≥ 0. (8)

Although the condition q1(x, b, ε) > 0 is stated in terms of a strict 
inequality, we must consider the possibility of a non strict inequal-
ity at the limit when ε ↘ 0. The set S of points satisfying the 
above conditions consists of three curves as depicted (dashed blue) 
in Fig. 1. AH bifurcations curves for ε = 0.005 are also shown. 
Note that not the whole set S becomes the singular limit for 
AH bifurcations curves. When x = 2(b − 5)/3, (7) is satisfied and 
substituting in (6) we get the equation for the graph G of a poly-
nomial I(b) of degree 3. On the other hand, (8) is also satisfied 
because 3x2 + (10 − 2b)x = 0. It follows that G is the singular 
limit for a surface in the 3-parameter space satisfying P (x) = 0
and C(x, b, ε) = 0, but only a part of it satisfies q1(x, b, ε) > 0. We 
note that the bifurcation diagram of the HR-model does not dis-
play a U-shaped Hopf bifurcation curve as that observed for other 
excitable systems (see [14–16,19]).

Fig. 1 also shows four homoclinic bifurcation curves (green and 
black) for different values of ε. The lowest value (black) is for 

Fig. 1. Some features of the bifurcation diagram for the Hindmarsh–Rose model. 
Dashed blue curves show the set S of curves satisfying (6), (7) and (8), which con-
tains the singular limit (ε = 0) of AH bifurcations in the full system. AH bifurcations 
(solid red) are shown for ε = 0.005. Note that not the whole set S is part of the sin-
gular limit. Homoclinic bifurcations (solid green and black) are shown for different 
values of ε (the lowest value (black) corresponds to ε = 0.005). In the magnifica-
tion the first primary homoclinic bifurcations curves are shown for different values 
of ε. As the small parameter ε increases, the number of “visible” foldings (with re-
spect to b) of the homoclinic curve changes. (For interpretation of the colors in this 
figure, the reader is referred to the web version of this article.)

ε = 0.005. In this case (for small values of ε), as for the sys-
tems considered in [14–16,19], homoclinic bifurcation curves are 
C-shaped. Numerical simulations show that there is a singular limit 
for the homoclinic bifurcations. Nevertheless, unlike the model 
studied in [15], a characterization of such singular limit involves 
extra difficulties and we pose this question as an open question for 
the next future. Anyway, it must be noticed that, as in [2,15], ac-
cording to the numerical simulations, the homoclinic bifurcations 
curves do not terminate at a point approaching the set S . On the 
contrary, at both “ends” there is a sharp turning of the curve. How-
ever, this will make clear in the next section.

3. Homoclinic bifurcations

Of course, as already argued, an essential piece to get the whole 
picture of the dynamics emerging in the HR-model is to under-
stand the role of the singular limit as the source of a puzzling 
bifurcation diagram. Nevertheless, to have a deeper knowledge of 
the model, it is also crucial to study a wider range of time scales 
of the slow variable z. In this approach, the latest goal should be to 
find organizing centers located not necessarily close to the singular 
limit and to understand how the bifurcations evolve as ε decreases. 
Hence, from a different perspective, this approach could be helpful 
to give some insight into the global picture that we already know 
to be very entangled for ε � 1.

Since this paper focuses mainly on the role played by the ho-
moclinic bifurcation, we study how they evolve as ε varies (in this 
paper we just show the first primary homoclinic orbits, related 
with the first spike-adding process [2]). The numerical results dis-
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