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The stability of a viscoelastic self-gravitating quantum fluid has been studied. Symmetry breaking 
instability of solitary wave has been observed through ‘viscosity modified Ostrovsky equation’ in weak 
gravity limit. In presence of strong gravitational field, the solitary wave breaks into shock waves. Response 
to a Gaussian perturbation, the system produces quasi-periodic short waves, which in terns predicts the 
existence of gravito-acoustic quasi-periodic short waves in lower solar corona region. Stability analysis of 
this dynamical system predicts gravity has the most prominent effect on the phase portraits, therefore, 
on the stability of the system. The non-existence of chaotic solution has also been observed at long 
wavelength perturbation through index value theorem.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Self gravitating fluid has significant importance in astrophysics, 
condensed matter physics, plasma physics and many other
branches of physics. Self gravitating fluid can support many dif-
ferent nonlinear waves. The knowledge of breaking and stability of 
those waves is a fundamental key to explore the structure and dy-
namics of the fluids. Astrophysical bodies like, molecular clouds, 
galaxies, etc., can be correctly represented through self-gravitating 
fluids. Therefore, the condensation and star formation mechanisms 
can be studied through self gravitating fluid model aided with ap-
propriate initial and boundary conditions [1,2].

In linear regime, the influence of viscoelasticity, quantum sta-
tistical correction [3] and magnetic field [4,5] on gravitational in-
stability (Jeans instability) for quantum fluid has been studied. 
However, the intrinsic nonlinearities of hydrodynamic equations 
produce many striking phenomena like dispersion of soliton, quasi-
periodic short wave generation, symmetry breaking instability of 
solitary waves, very large amplitude wave (rouge wave), chaos, tur-
bulence, etc. into the system. Therefore, attention has gradually 
shifted from linear mode study to nonlinear analysis.

The existence and stability of nonlinear waves specifically, soli-
ton, have been studied for self gravitating molecular clouds [6]. 
Adams et al. [7] studied the existence and nonexistence of solitary 
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wave in a gravitating fluid via ‘charge density’ theory, and con-
cluded that, solitary waves exist only for those systems which are 
gravitationally stable against arbitrary large perturbation. Whereas, 
if the self gravitating fluid is made up with at least two species 
with different thermal velocities, then it can support solitary 
waves [6]. The existence of soliton has been studied for weakly 
magnetized molecular clouds by several authors [7,8]. The collision 
of two compact stars or collapse of a single star can produce ‘soli-
tary gravitational sound’ waves, which carries information about 
the (colliding or collapsing) stars and the propagating medium. 
These types of solitary wave have been studied for self gravitat-
ing fluid consisting of weakly interacting massive particles [9]. 
Effect of non-uniformity of the medium on the propagation and 
modulation of nonlinear waves has been studied extensively with 
reductive perturbation method [10]. The quantum hydrodynamic 
(QHD) formulation for different physical system has been stud-
ied extensively. Minguzzi et al. [11] studied trapped BEC via QHD 
and obtained a microscopic Landau equation for the inhomoge-
neous system. The scattering problem of particles has been at-
tacked through QHD by Nassar [12] and derived a formula for 
the transmission coefficient of the scattered particles. Propaga-
tion and collision of soliton ring in quantum plasma have also 
been studied via QHD [13]. Ghosh et al. [14] studied the evolution 
of solitary waves in Bose–Einstein gravitational condensate gas in 
QHD regime and concluded that, rarefactive solitary wave exists in 
this system. Similarity between Bose–Einstein condensation in the 
canonical ensemble, and the gravitational collapse of classical self-
gravitating gas has been established by Sopik et al. [15]. Conditions 

http://dx.doi.org/10.1016/j.physleta.2016.12.026
0375-9601/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.physleta.2016.12.026
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/pla
mailto:anibabun@gmail.com
mailto:rajdaju@rediffmail.com
mailto:mkhan.ju@gmail.com
http://dx.doi.org/10.1016/j.physleta.2016.12.026
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physleta.2016.12.026&domain=pdf


640 A. Mitra et al. / Physics Letters A 381 (2017) 639–645

of existence for dust-acoustic solitary wave in a self-gravitating op-
posite polarity dust-plasma system have been derived by Mamumn 
et al. [16]. Nonlinear plane periodic acoustic wave and its connec-
tion to the galaxy formation have been discussed by Liang [17]. 
The evolution of dust-ion-acoustic waves has been studied through 
self-gravitating fluid model by Masood et al. [18]. A very interest-
ing short asymmetric wave exists in solar corona region, which 
seems to take part in heating mechanism of the region. Robert et
al. [19] predicts that these types of asymmetric waves can be ini-
tiated in the corona by flare. These short waves are quasi-periodic 
waves. Nakariakov et al. [20] studied these waves through wavelet 
image method. They state that, the quasiperiodicity results from 
the geometric dispersion of the modes. The instantaneous period 
of oscillations decreases with time.

Phase space analysis is one of the most useful tool to study 
the stability criterion and the existence of chaotic state in a given 
system. Sola and Pettini [21] have studied the existence and the 
dynamics of chaos in self-gravitating N-body systems through Geo-
metric analysis in configuration space. They have discussed the re-
lationship between the Riemannian geometric description of chaos 
and Lyapunov exponents.

In this paper, we studied the evolution of nonlinear distur-
bances in a self gravitating viscoelastic quantum fluid. Generally 
solid material exhibits elastic properties much more profoundly 
than fluids. However, there is a certain limit [22], above which 
fluids also can show elastic properties. On the other hand, inter-
nal frictions are present in the real fluids, which, as a consequence 
produce viscosity. The presence of organic components in molec-
ular clouds makes the clouds viscoelastic [22]. In exotic environ-
ments of high density and temperature, such as core of neutron 
stars, pulsars, magnetars, and white dwarfs, matter can only ex-
ist in the form of fluid (plasma) for which, quantum effects play a 
significant role because of the very high densities involved. There-
fore, a quantum hydrodynamic (QHD) approach is very relevant 
and fruitful to analyze such astrophysical objects. The presence 
of quantum pressure (or Bohm potential) in momentum equation 
of QHD indicates the possibility of quantum tunneling of particles 
through potential barrier. This tunneling phenomenon gives rise to 
quantum dispersion in the medium. In general, we can name our 
approach as ‘viscoelastic QHD under the action of gravity’.

We address mainly two points in this paper, namely, (I) evolu-
tion of a nonlinear disturbance (solitonic and Gaussian pulse) in a 
self gravitating quantum viscoelastic fluid and (II) the dynamics of 
a self gravitating system in phase space.

The paper has been organized as follows.
Physical assumptions and basic equations are stated in sec-

tion 2. In section 3, the equation to study the dynamical evolution 
of the system has been derived. Evolutions of nonlinear distur-
bances in the system have been studied in section 4. The phase 
space dynamics (stability analysis) of the system is given in sec-
tion 5. The results of the study have been discussed in section 6.

2. Physical assumptions and basic equations

The continuity and momentum equations for a compressible 
viscoelastic fluid with quantum potential are as follows:
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The Poisson equation for gravity is:

∇2φ = 4πG(ρ − ρ0) (3)

and the equation of state is

p = c2ρ

where η and ζ are the shear viscosity and bulk viscosity, respec-
tively. τ is the relaxation time of the system. m is the mass of the 
constituent particles of the system. c is the speed of sound through 
the system. φ is gravitational potential defined as �g = −�∇φ.

3. Dynamical evolution of the system

To investigate the dynamical evolution of the system, we con-
sider one spatial dimension (generalization to more spatial dimen-
sion is trivial), namely, x̄ = x/L (L is the length scale of the system), 
t̄ = ct/L, ρ̄ = ρ

ρ0
, ū = u/c. Hereafter we shall use these new vari-

ables and remove all the bars for simplicity of notation. From (1)
and (2), we obtain
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cL ; 1
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.

To study the nonlinear propagation characteristic of perturba-
tion, we employ the reductive perturbation technique and intro-
duce the following stretched coordinates:

ξ = ε
1
2 (x − Mt), τ = ε

3
2 t, (6)

where M determines the (normalized) group velocity of the lin-
ear wave and ε characterizes the strength of the nonlinearity. The 
physical variables ρ , u are expanded in the power series of ε as(
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Now taking divergence of equation (5) and using equation (3)
we have
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To include the gravitational effect and viscoelasticity and also 
for the consistent perturbation, we consider the following scaling

L

λ j
∼ ©(ε); 1

R
∼ ©(

√
ε) (9)

Now substituting the stretching coordinates (6), perturbation 
expansions (7) and the scalings (9) into (4) and (8), we obtain the 
following relations in the lowest powers of ε:

M = 1;ρ(1) = u(1) (10)
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