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Statistical properties for the recurrence of particles in an oval billiard with a hole in the boundary are 
discussed. The hole is allowed to move in the boundary under two different types of motion: (i) counter-
clockwise periodic circulation with a fixed step length and; (ii) random movement around the boundary. 
After injecting an ensemble of particles through the hole we show that the surviving probability of the 
particles without recurring – without escaping – from the billiard is described by an exponential law and 
that the slope of the decay is proportional to the relative size of the hole. Since the phase space of the 
system exhibits islands of stability we show there are preferred regions of escaping in the polar angle, 
hence given a partial answer to an open problem: Where to place a hole in order to maximize or minimize a 
suitable defined measure of escaping.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

A billiard is a dynamical system where a point-like particle 
moves with constant speed along straight lines confined to a piece-
wise smooth boundary to where it experiences specular reflections 
[1]. In such type of collisions the tangent component of the ve-
locity of the particle, measured with respect to the border where 
collision happened, is unchanged while the normal component re-
verses sign. Originally, the investigation on billiards was introduced 
in the seminal paper of Birkhoff [2] in the beginning of last cen-
tury – therefore introducing a new research area – and since from 
there the scientific research on this topic has experienced a great 
development. Indeed, Birkhoff considered the investigation of the 
motion of a free point-like particle in a bounded manifold. Modern 
investigations on billiards however are connected with the results 
of Sinai [3] and Bunimovich [4,5] who made rigorous demonstra-
tions in the subject. The billiards theory has also been used in 
many different kinds of physical systems, including experiments 
on superconductivity [6], wave guides [7], microwave billiards [8,
9], confinement of electrons in semiconductors by electric poten-
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tials [10,11], quantum tunneling [12], plasma physics [13,14] and 
many others.

The dynamics of a particle in a billiard can be matched into 
one of the following three possibilities: (i) regular; (ii) ergodic and; 
(iii) mixed. The circular billiard is a typical example of case (i) 
since it is integrable due to the conservation of energy and angular 
momentum [1]. The phase space is filled with straight lines. Other 
example of such a system is the elliptical billiard in which the en-
ergy and the angular momenta about the two foci are preserved 
[15]. Case (ii) corresponds to systems containing zero measure sta-
ble periodic orbits, hence dominated by chaotic dynamics, as the 
Bunimovich stadium [4,16] as well as the Sinai billiard [3]. Finally 
the case (iii) is the most common among them, and in such sys-
tems the phase space is composed by Kolmogorov–Arnold–Moser 
(KAM) islands surrounded by a chaotic sea which is limited by a 
set of invariant spanning curves [17,18]. Typical example includes 
the annular billiard [12]. In Ref. [15], Sir Michael Berry discussed a 
family of billiards of the oval-like shapes. The radius in polar coor-
dinates has a control parameter, (ε), which leads to a smooth tran-
sition from a circumference with (ε = 0) – hence integrable – to 
a deformed form with (ε �= 0). For sufficiently small (ε), a special 
set of invariant spanning curves exists in the phase space corre-
sponding to the so-called whispering gallery orbits. They are orbits 
moving around the billiard, close to the border, with either posi-
tive (counterclockwise dynamics) or negative (clockwise dynamics) 
angular momentum. As soon as the parameter reaches a critical 
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value [19], the invariant spanning curves are destroyed as well as 
the whispering gallery orbits.

Billiards can also be considered in the context of recurrence 
of particles [20,21], particularly related to the Poincaré recurrence 
[20,22]. The recurrence can be measured from the injection and 
hence from the escape of an ensemble of particles by a hole made 
in the boundary. The dynamics is made such that a particle in-
jected through the hole is allowed to move inside the billiard 
suffering specular reflections with the boundary until it encoun-
ters the hole again. At this point the particle escapes from the 
billiard. The number of collisions that the particle has had till the 
escape is computed and another particle with different initial con-
dition is introduced in the system. The dynamics is repeated until 
a large ensemble of particles is exhausted. The statistics of the re-
currence time is then obtained. The known results are that for a 
totally chaotic dynamics, the survival probability – probability that 
the particle survives without escaping through the hole – is de-
scribed by an exponential function [23,24]. However, if there are 
resonance islands, it is possible to observe a different behavior for 
the survival probability. For this situation, we can observe some 
chaotic orbits very close to islands of stability in such way that 
these orbits can be trapped around the islands for a long time 
influencing the survival probability. In this case, the survival prob-
ability is changed to a lower decay, as conjectured in Ref. [22], to 
be described by a power law of universal scaling with an expo-
nent from the order of � −2.57. Therefore, as considered recently 
in a book chapter by Dettmann [23] who discusses some open 
problems in billiard with holes, a particular question was posed 
regarding to escape of particles: Optimisation: Specify where to place 
a hole to maximize or minimize a suitable defined measure of escaping.

In the current paper we discuss the recurrence of particles in 
an oval-like shaped billiard with a hole in the boundary and our 
main goal is to move a step further as an attempt to give a partial 
answer to the above question. We know that if we have just one 
hole and we choose any position for it, some initial conditions in-
jected through the hole will escape. The escaping time is fast for 
some positions of the hole. So, the idea to move the hole along 
the billiard boundary allows us to analyze the rate of escape, or 
the survival of the particles, in different positions through the es-
caping time. In our simulations the hole is allowed to move around 
the boundary under two different rules: (i) periodic and; (ii) ran-
dom. In either cases, we define fixed places around the boundary 
to where the hole can be introduced. In the case (i) the hole moves 
counterclockwise under two circumstances. As soon as the particle 
is injected through the hole, its position moves if the particle es-
capes through it with less than 5 collisions with the boundary. 
If the particle does not escape until 5 collisions, it moves coun-
terclockwise to a neighboring allowed position and waits until a 
escape or to more than other 5 collisions. The billiard perime-
ter is divided into 63 equal steps for the hole tour. This process 
repeats injecting and escaping particles until all the ensemble is 
exhausted. In the case (ii) the hole moves randomly around the 
boundary respecting the time of 5 collisions. The survival probabil-
ity, obtained from the recurrence time that the particle spents to 
escape, is accounted for a large ensemble of noninteracting parti-
cles. At each time that the particle escapes, the polar angle and the 
angle of the trajectory of the particle are known from the equa-
tions of the map. Then a statistics of the density of particles that 
escaped from a given region of the phase space can be computed. 
We show that the density of escape measured in both polar angle 
as well as the angle of the particle’s trajectory present peaks and 
valleys. The peaks are associated to the high density occupation in 
the phase space while the valleys are mostly linked to the periodic 
islands domain. Our results then give a partial answer to the above 
open question, at least for the oval billiard which has mixed phase 
space.

Fig. 1. (Color online.) Illustration of the angles involved in the billiard.

This paper is organized as follows. In Sec. 2 we discuss the 
model and the equations that fully describe the dynamics of the 
system. The escape properties for the particles when the hole 
moves periodically around the boundary are made in Sec. 3. The 
survival probability for the particles when the hole moves ran-
domly around the boundary is discussed in Sec. 4 while our final 
remarks and conclusions are drawn in Sec. 5.

2. The static oval billiard

We discuss in this section how to obtain the equations that 
fully describe the dynamics of the system. To start with, the radius 
of the boundary in polar coordinate is given by

R(θ, ε, p) = 1 + ε cos(pθ), (1)

where θ is the polar coordinate, ε corresponds to a perturba-
tion parameter of the circle and p > 0 is an integer number. 
For ε = 0 the system is integrable. The phase space is foliated 
[1] and only periodic and quasi-periodic orbits are observed. For 
ε �= 0 the phase space is mixed containing both periodic, quasi-
periodic and chaotic dynamics. When ε reaches the critical value 
[19] εc = 1/(1 + p2) the invariant spanning curves, corresponding 
to the whispering gallery orbits are destroyed and only chaos and 
periodic islands are observed. This happens when the boundary is 
concave for ε < εc and is not observed for ε > εc when the bound-
ary exhibits segments that are convex.

The dynamics is described by a two dimensional nonlinear 
mapping relating the variables (θn, αn) → (θn+1, αn+1) where θ

denotes the polar angle to where the particle collides and α rep-
resents the angle that the trajectory of the particle does with a 
tangent line at the collision point. Fig. 1 illustrates the representa-
tion of the angles.

For an initial condition (θn, αn) the position of the particle 
is written as X(θn) = [1 + ε cos(pθn)] cos(θn) and Y (θn) = [1 +
ε cos(pθn)] sin(θn). The angle of the tangent vector at the polar co-

ordinate θn is φn = arctan
[

Y ′(θn)
X ′(θn)

]
, where X ′(θ) = dX(θ)/dθ and 

Y ′(θ) = dY (θ)/dθ . Since there are no forces acting on the particle 
from collision to collision, it then moves along a straight line so its 
trajectory is given by

Y (θn+1) − Y (θn) = tan(αn + φn)[X(θn+1) − X(θn)], (2)

where θn+1 is the new polar coordinate of the particle when it hits 
the boundary, which is to be obtained numerically. The angle αn+1
given the slope of the trajectory of the particle after a collision is

αn+1 = φn+1 − (αn + φn). (3)
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