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The high-frequency transport in a two-dimensional conducting ring having an inhomogeneous collinear 
magnetic structure has been considered in the hydrodynamic approximation. It is shown that the 
frequency dependence on the radial electric conductivity of the ring exhibits resonances corresponding 
to new hybrid oscillations in such systems. The oscillation frequencies are essentially dependent on the 
applied electromagnetic field and the spin state of the system.
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1. Introduction

Spin accumulation in conducting nanosystems remains a prob-
lem of continuous keen interest [1]. Its dynamic aspect was in-
vestigated for the first time in [2]. In a conductor with inhomo-
geneous magnetic properties a nonequilibrium spin concentration 
generates forces acting on the spin components of the carriers and 
exciting coupled spin-current oscillations (we call them a “spin 
pendulum”). In this study we consider the possibility of spin-
current resonances in a two-dimensional conducting ring in a non-
quantizing magnetic field. As an example, the above effects are 
examined in a nondegenerate electron system on the liquid he-
lium surface (ESLH) and in two-dimensional semiconducting het-
erostructures. Magnetic inhomogeneity of these systems can be 
induced in various ways, for example, by introducing nonequilib-
rium concentrations of magnetic impurities, applying spatially in-
homogeneous magnetic fields or inhomogeneous electrostatic gate 
fields commonly used in experiments on heterostructures [3]. Ex-
perimental observation of resonances investigated in the article is 
the way to reveal of previously predicted by us [2] “spin pendu-
lum” oscillations of the conductor spin system, and study effects 
associated with them.

For the experimental realization of the predicted effects, one 
can use materials which are widely used in experiments with 2D 
electronic conductors in heterostructures [4] based on GaAs and 
ESLH. The problem is only in the creation of the spatial inhomo-
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geneity of the spin polarization conductor by methods suggested 
above.

Previously we investigated closely the transport and the spin-
electric effect in the ESLH employing the quasi-equilibrium ap-
proximation [5], i.e., in external electromagnetic fields whose fre-
quencies were low enough to permit the spin diffusion to form 
the equilibrium electron distribution under the influence of the 
forces of the inhomogeneous magnetic field acting on the spins. It 
was shown that within the range used the longitudinal and lateral 
electrical resistances in the magnetic field were determined not 
only by the momentum-loss scattering of electrons, but also by the 
electron–electron collisions generally dominant in the ESLH [6] and 
important in low-dimensional semiconducting structures [7]. This 
study is concerned with the transport properties of the mentioned 
inhomogeneous systems at relatively high frequencies of the exter-
nal field. It is shown that new resonances can be formed involving 
the spin degree of freedom. The conditions of their observation 
have been studied.

2. Two-liquid hydrodynamics of conducting spin systems

The description of conducting systems possessing the spin de-
gree of freedom in the two-liquid hydrodynamic approximation 
was substantiated in [2]. A similar approach was employed ear-
lier in [8]. For simplicity, we consider a system with collinear 
magnetization. To put it differently, the system is an incoherent 
mixture of “spin-up” and “spin-down” states, i.e., two electron spin 
components. The hydrodynamic approximation is valid when the 
momentum–conservation collisions in the electron system (normal 
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collisions) dominate over other possible ones [9]. We assume that 
the inequality νee � ν (νee is the frequency of electron–electron 
collisions, ν is the frequency of electron collisions with possi-
ble structure imperfections) is obeyed and the mean free path is 
lee � L and νee � ω, where L and ω are the characteristic lengths 
and frequencies of the problem, respectively. This condition holds 
true in the ESLH [6] and heterostructures [10].

In the ESLH currents are generated in a noncontact way by ap-
plying an AC electric potential to the electrodes located near the 
ESLH. The same technique is applicable for low-dimensional het-
erostructures. In this case the polarized charges ρe induced by the 
electrodes in the electron system or the corresponding polarization 
currents related to the charges according to the continuity equa-
tion div je = −∂ρe/∂t can be taken as pre-assigned parameters.

According to [5], the following linearized system of hydrody-
namic equations can be written down:

iω(ρeσ + δρσ ) + divρσ uσ = −νs�
∗(μσ − μ−σ ) (1)

(iω + ν)muσ − e
[uσ H ]

c
+ ∇(μσ + eϕ)

= −m
ρ−σ

ρ
νee(uσ − u−σ ) (2)

∑
σ

δρσ = 0 (3)

�∗−1 =
∑
σ

�−1
σ (4)

This system is for a “good” conductor [5] in which the depar-
ture from electric neutrality is related only to the polarization 
charges providing in the first approximation a steady potential 
along the conductor; ϕ is the next approximation to the poten-
tial induced by the flowing current. We have δρeσ = 0 when the 
current source is connected directly. It is convenient to choose 
the spin components of the polarization charge in the equilib-
rium form: ρeσ = �σ ρe/�, � = ∑

σ �σ (however, the total den-
sity of the component ρeσ + δρσ can be far from equilibrium). In 
Eqs. (1)–(4) ω is the frequency of the applied electric field, δρσ is 
the non-equilibrium addition to the density of the electrons with 
the spin projections σ onto the chosen direction, ρσ is the equi-
librium density which is assumed to be spatially inhomogeneous 
due to the applied nonuniform electric and magnetic fields and 
nonequilibrium concentrations of magnetic impurities; νs is the 
frequency of the spin-flip processes, δμσ is the nonequilibrium 
addition to the chemical potential of the spin component in the 
ESLH case when the momentum distribution of electrons can be 
considered classical; δμσ = T (δρσ /ρσ ), T is the temperature; �σ

is the density of states of the spin component at the Fermi sur-
face; uσ = jσ /ρσ is the drift velocity, H is the magnetic field 
component perpendicular to the two-dimensional plane, ν is the 
frequency of momentum-loss collisions of electrons, νee is the fre-
quency of electron–electron collisions (see the description [11] of 
the processes of scattering in spin-polarized transport). It is found 
[5] that at relatively low frequencies the drift velocities of spin 
components can differ significantly even when the drift approxi-
mation is applicable.

At frequencies exceeding the inverse time of spin diffusion 
within the boundaries of the sample the rate variations in spin 
components are negligible. In this case it is convenient to multiply 
Eq. (2) by ρσ and sum it over σ :

(iω + ν)m j +
∑
σ

ρσ ∇μσ + ρe∇ϕ − e

c
[ j H ] = 0 (5)

Here ρ0 = ∑
σ ρ0σ is the total equilibrium charge density, j = ρ0u

is the total electron flow. On summation the right-hand side of 
Eq. (2) loses the term describing the mutual friction of the electron 
components.

Fig. 1. Scheme of the proposed experiment: 2D magnetically inhomogeneous con-
ducting ring with the width a and radius R . The annular geometry of the proposed 
experiment is fundamentally important for considered effect, because this allows 
current to flow in the direction perpendicular to the applied electric field direction.

3. Spin-current and combined spin–cyclotron resonances

Consider a two-dimensional conducting ring with the radius R
and width a (see Fig. 1). The ring is connected, directly or in a 
noncontact way, to an AC current source along its outer and in-
ner boundaries. Apart from the mentioned small parameters of 
the problem, we take into account the geometric small parame-
ter a � 2π R = L which normally corresponds to the experimental 
conditions on the ESLH. The properties of the conductor and the 
magnetic field are assumed to be homogeneous along the radial 
coordinate r.

Note that in the main approximation with respect to the ge-
ometric small parameter the polarization charge density ρeσ can 
be taken as an odd function of the r-coordinate (−a/2 < r < a/2). 
Therefore, on averaging the sought-for values over r the term for 
polarization charges drops out of Eq. (1). Assuming equal drift ve-
locities for the spin components (see above) we have jσ = ρσ u =
jρσ /ρ . Averaged Eq. (1) gives:

δρσ = −(iω + νs)
−1 jl

d

dl

(
ρσ

ρ

)
. (6)

Here l is the coordinate along the ring. The equation takes into 
account the absence of a current flow through the sample bound-
aries on a noncontact connection. In the case of direct connection 
equation (6) is also valid if densities of the in- and out-currents at 
the same l are equal to each other. The latter may be provided by 
the homogeneity of the lead-in and the lead-out when the resis-
tivity of the material of the contacting leads is much higher than 
that of the ring. jl is the l-projection of the width-averaged total 
electron flow in the ring. It is l-independent by virtue of electric 
neutrality (result of σ -summed Eq. (1) and Eq. (3)). Henceforward 
the notation of averaging is omitted since we use only r-averaged 
quantities (except for Eq. (12)).

Averaging Eq. (5) over r we obtain in the r- and l-projections:

(iω + ν)mjr + e

a
ρ
[
ϕ(a/2) − ϕ(−a/2)

] + eH

c
jl = 0 (7)

(iω + ν)mjl −
∑
σ

ρσ
d

dl

[
(iω + νs)

−1�−1
σ

djl(ρσ /ρ)

dl

]

+ eρ
dϕ

dl
− eH

c
jr = 0 (8)

According to Eqs. (4) and (6), μσ in Eqs. (7) and (8) is expressed 
in terms of the flows. The l-independent parameter jl in the sec-
ond term of Eq. (8) is kept under the derivative sign for using the 
equation in the next section. The term for the pressure difference 
at the ring edges is omitted from Eq. (7): according to estimation, 
this quantity is lower in parameter a � L than the other contribu-
tions to the potential ϕ . After dividing both sides of Eq. (8) by ρ
and performing integration over l within the boundaries of the ring 
we obtain:
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