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Evaporation rate of water is strongly influenced by energy barrier due to molecular collision and 
heat transfer limitations. The evaporation coefficient, defined as the ratio of experimentally measured 
evaporation rate to that maximum possible theoretical limit, varies over a conflicting three orders of 
magnitude. In the present work, a semi-analytical transient heat diffusion model of droplet evaporation 
is developed considering the effect of change in droplet size due to evaporation from its surface, when 
the droplet is injected into vacuum. Negligible effect of droplet size reduction due to evaporation on 
cooling rate is found to be true. However, the evaporation coefficient is found to approach theoretical 
limit of unity, when the droplet radius is less than that of mean free path of vapor molecules on 
droplet surface contrary to the reported theoretical predictions. Evaporation coefficient was found to 
reduce rapidly when the droplet under consideration has a radius larger than the mean free path 
of evaporating molecules, confirming the molecular collision barrier to evaporation rate. The trend of 
change in evaporation coefficient with increasing droplet size predicted by the proposed model will 
facilitate obtaining functional relation of evaporation coefficient with droplet size, and can be used for 
benchmarking the interaction between multiple droplets during evaporation in vacuum.

© 2016 Published by Elsevier B.V.

1. Introduction

Mass transfer driven cooling mechanism due to evaporation is 
fundamental in nature, and has a large influence on various appli-
cations in the fields of science and engineering. Although evapora-
tion cooling has been applied for numerous industrial and domes-
tic applications, the intensive research in the area still remained 
inadequate to explain the underlying mechanism to predict evap-
oration rate accurately. The experimental and molecular dynamic 
study of evaporation phenomena over the last two decade revealed 
the existence of an energy barrier in excess to latent heat of evap-
oration, which has a strong influence on mass transfer rate during 
evaporation process [1–4].

Among the evaporation cooling techniques, flash evaporation 
cooling characterized by sudden depressurization of liquid is one of 
the effective ways of reducing temperature of the liquid rapidly [5]. 
When the liquid surface is exposed to low pressure, the maximum 
evaporation mass flux (ṁ′′

e,max) in the absence of energy barrier is 
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derived by Hertz [6] and Knudsen [7,8] by using kinetic theory and 
is given as follows:

ṁ′′
e,max =

√
M

2π Ru

(
ps√
Ts

− pv√
T v

)
(1)

where, M , Ru , are molar mass of water and universal gas constant 
respectively, ps saturation pressure at droplet surface correspond-
ing to surface temperature Ts , T v is the saturation temperature 
corresponding to the low pressure pv maintained in vacuum. How-
ever, the presence of energy barrier tends to restrict the evapora-
tion mass flux predicted by Knudsen Eq. (1) [8]. The parameter 
that captures the restriction on evaporation due to the energy bar-
rier, is called evaporation coefficient (γe), and is defined as the 
ratio of actual evaporation rate to that obtained as the maximum 
theoretical limit obtained by Eq. (1). For all real purposes γe varies 
within the range [9] 0 < γe ≤ 1, and observed evaporation mass-
flux can be obtained as ṁ′′

e,obs = γeṁ′′
e,max . Extensive studies to 

determine appropriate value of γe over the last few decades pro-
duced extremely conflicting results ranging over three orders of 
magnitude [10,11]. Evaluation of γe has a very strong dependence 
on measurement errors caused significantly by presence of tem-
perature gradient from the surface to the bulk [1], other than due 
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to contamination, uncertainties of surface temperature, and uncer-
tainty of pressure and temperature of vapor just above the surface, 
to name a few.

In order to verify the range of γe at ideal conditions, tempera-
ture evolution of micro-droplets of water with radius ranging from 
6–20.3 μm exposed of near zero pressure (< 5 × 10−4 Torr), was 
studied by Smith et al. [12]. The bulk temperature was measured 
using Raman Thermometry. A simple diffusion based mathematical 
model [13] was used for obtaining γe by fitting γe values in the 
theoretical model to match the experimentally measured tempera-
ture evolution. The reason for experiments on such small droplets 
in high vacuum, was to obtain water molecules to evaporate bal-
listically (without gas phase collisions [12]), and thus, avoiding the 
possibility of re-condensation of vapor molecules on the droplet 
surface. It was also argued that re-condensation can be avoided 
completely by keeping the droplet size less than the mean free 
path of the evaporating molecules directly above the evaporat-
ing surface [12]. For saturation temperature range 295–273.16 K, 
the mean free path was found out to be of the order of 10 μm, 
and almost ideal ballistic or free evaporation can be achieved for 
droplet radius r ≤ 10 μm [12]. The predicted γe was reported to be 
0.62 ± 0.09 for droplet radius varying within the range from 6 to 
20.3 μm.

Interestingly, the prediction of γe by lumped heat model was 
0.71 ±0.09, and greater than that predicted by the diffusion model. 
Lumped heat model considers infinite heat diffusion rate within 
the droplet, hence, prediction of droplet cooling rate by lumped 
model must be faster than that predicted by diffusion model and, 
a smaller γe value is expected to be predicted by lumped model as 
compared to diffusion model, contrary to the reported prediction 
by Smith et al. [12].

To address this discrepancy, a close investigation of the phe-
nomena is performed in this present work by developing a rigor-
ous transient heat diffusion model of droplet evaporation cooling. 
Effect of droplet size reduction due to evaporation from the sur-
face is also considered in the model. However, the effect of size 
reduction is expected to be negligible, since latent heat of evapo-
ration (h f g ) is very large as compared to the small heat content of 
the droplet.

2. Mathematical modeling

The equation for 1-D heat diffusion in radial direction for a sin-
gle spherical droplet is given as,

∂T

∂t
= α

r2

∂

∂r

(
r2 ∂T

∂r

)
(2)

where, α = k/ρcp is the thermal diffusivity of water. When the 
superheated droplet enters the vacuum (p < 5 × 10−4 Torr), the 
droplet is subjected to the following initial and boundary condi-
tions: T (0, r) = Ti ; ∂T /∂r|r=0 = 0; −k∂T /∂r|r=rs = h f gṁ′′

e , where 
subscript ‘i’ and ‘s’ designate initial condition and droplet surface 
respectively. Since the droplet volume decreases due to evapora-
tion from the droplet surface, the rate of change of droplet surface 
radius can be obtained as: ρh f gdrs/dt = −h f gṁ′′

e . The mass flux 
can be obtained as: ṁ′′

e = γeṁ′′
e,max , where ṁ′′

e,max is defined by 
Knudsen Eq. (1) [8] (note: pv/

√
T v � 0 for pv < 5 × 10−4 Torr, 

and ṁ′′
e,max � ps

√
M/2π Ru Ts). The vapor pressure at droplet sur-

face ps can be obtained by using Clapeyron equation for ideal gas 
using a reference temperature Tref and corresponding saturation 
pressure pref , as shown by Eq. (3). The reference temperature con-
sidered for the present study is the triple point of water.

ps

pref
= exp

[
h f g M

Ru

(
1

Tref
− 1

Ts

)]
(3)

1-D heat diffusion Eq. (2) is nondimensionalized considering 
nondimensional temperature θ = T /Ti , radius r∗ = r/ri , and time 
Fo = tα/ri

2 respectively to obtain Eq. (4) with nondimensional ini-
tial and boundary conditions: θ(0, r∗) = 1, and ∂θ/∂r∗|r∗=0 = 0, 
∂θ/∂r∗|r∗=r∗

s
= −Hθs . Nondimensional mass flux (H), and surface 

temperature are defined as: H = rih f gṁ′′
e /kTs , and θs = Ts/Ti re-

spectively. Similarly, the rate of change of nondimensional droplet 
surface radius can be obtained as: dr∗

s /dFo = −ṁ′′
e ri/ρα.

∂θ

∂ Fo
= 1

r∗2

∂

∂r∗

(
r∗2 ∂θ

∂r∗

)
(4)

The analytical solution of Eq. (4) can be obtained as [14]:

θ = 4

r∗
∞∑

n=1

Cn
sin(λnr∗)

eλn
2 Fo

r∗
s,i∫

0

θ(0, r∗)r∗ sin(λnr∗)dr∗ (5)

In Eq. (5), λn are the positive roots of the transcendental 
equation tan(λnr∗

s )/λnr∗
s = 1/(1 − Hr∗

s ), and, Cn = λn/[2r∗
s,iλn −

sin(2λnr∗
s,i)].

The transient temperature profile given by the series solution 
in Eq. (5) can be obtained by using an iterative scheme. The heat 
flux at the droplet surface is defined by the evaporation flux ṁ′′

e , 
which is a highly nonlinear function of the droplet surface tem-
perature. The iterative procedure involves taking the first guessed 
value of surface temperature (Ts) at time t + 	t to be the surface 
temperature at time t , and calculating the first guess for ṁ′′

e and, 
hence, H at time t +	t . The non-dimensional surface radius r∗

s can 
also be updated from the first guess of surface mass flux ṁ′′

e by 
numerical integration of equation dr∗

s /dFo = −ṁ′′
e ri/ρα, over the 

nondimensional time interval Fo to Fo + 	Fo . Once, H and r∗
s are 

calculated, λn values can be obtained solving transcendental equa-
tion for λn , which in turn can be used in Eq. (5) to obtain the next 
guess of temperature distribution in the droplet including the sur-
face temperature. The iteration continues till r∗

s and Ts converges 
with error limit less than 10−7.

There are two different ways of treating Eq. (5) numerically: 
namely, scheme (i) where initial condition θ(0, r∗) = 1 and r∗

s,0 = 1
are used in the integration term of Eq. (5) and obtaining the sim-
plified expression [15] for θ given by Eq. (6), and scheme (ii) where 
previous time step distribution of θ(Fo, r∗) and r∗

s,Fo
are treated as 

the initial condition for the current time-step (Fo + 	Fo) and ob-
taining the integration term in Eq. (5) numerically (Eq. (7)).

θ = 4

r∗
∞∑

n=1

An
sin(λnr∗)

eλn
2 Fo

(6)

θ = 4

r∗
∞∑

n=1

Bn
sin(λnr∗)
eλn

2	Fo

r∗
s,Fo∫

0

θ(Fo, r∗)r∗ sin(λnr∗)dr∗ (7)

An and Bn appearing in Eq. (6) and Eq. (7) are defined as An =
[sin(λn) − λn cos(λn)]/λn[2λn − sin(2λn)] and Bn = λn/[2r∗

s,Fo
λn −

sin(2λnr∗
s,Fo

)] respectively.
Both the numerical schemes described by Eq. (6) and Eq. (7)

are implemented to obtain droplet bulk temperature (Tb) evolution 
and the results are compared with the experimental observation 
by Smith et al. [12]. Scheme (i) (Eq. (6)), although much sim-
pler to implement, found out to be less accurate as compared to 
scheme (ii) (Eq. (7)). The reason being quite obvious, and can be 
attributed to the transient nature of droplet surface boundary con-
dition, as well as the surface location (however small it is). Fig. 1
shows the typical evolution of non-dimensional temperature dis-
tribution in the droplet with time for both modeling schemes (i) 
and (ii). The arrow in Fig. 1 indicates the direction of time. The in-
tegration term in Eq. (7) involves numerically obtaining the area 
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