
Physics Letters A 381 (2017) 440–445

Contents lists available at ScienceDirect

Physics Letters A

www.elsevier.com/locate/pla

Ising percolation in a three-state majority vote model

Alexander S. Balankin a,∗, M.A. Martínez-Cruz a, Felipe Gayosso Martínez a, Baltasar Mena b, 
Atalo Tobon a, Julián Patiño-Ortiz a, Miguel Patiño-Ortiz a, Didier Samayoa a

a Grupo Mecánica Fractal, ESIME, Instituto Politécnico Nacional, México D.F., 07738, Mexico
b Laboratorio de Ingeniería y Procesos Costeros, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Sisal, Yucatán, 97355, Mexico

a r t i c l e i n f o a b s t r a c t

Article history:
Received 25 October 2016
Received in revised form 1 December 2016
Accepted 1 December 2016
Communicated by C.R. Doering

Keywords:
Majority vote model
Non-consensus state
Percolation
Critical exponents
Universality classes

In this Letter, we introduce a three-state majority vote model in which each voter adopts a state of 
a majority of its active neighbors, if exist, but the voter becomes uncommitted if its active neighbors 
are in a tie, or all neighbors are the uncommitted. Numerical simulations were performed on square 
lattices of different linear size with periodic boundary conditions. Starting from a random distribution of 
active voters, the model leads to a stable non-consensus state in which three opinions coexist. We found 
that the “magnetization” of the non-consensus state and the concentration of uncommitted voters in it 
are governed by an initial composition of system and are independent of the lattice size. Furthermore, 
we found that a configuration of the stable non-consensus state undergoes a second order percolation 
transition at a critical concentration of voters holding the same opinion. Numerical simulations suggest 
that this transition belongs to the same universality class as the Ising percolation. These findings highlight 
the effect of an updating rule for a tie between voter neighbors on the critical behavior of models obeying 
the majority vote rule whenever a strict majority exists.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Opinion formation through contrast and synthesis of different 
viewpoints has been extensively studied using models based on 
ideas from statistical physics (see, for review, Refs. [1–5] and ref-
erences therein). Various models of opinion formation have been 
inspired by spin systems with short range interactions. Although 
these models ignore many important aspects of complex social 
systems, it has been recognized that simple decision-making rules 
allow to reveal some essential features of the opinion dynamics. 
Among of the most popular decision-making rules are the major-
ity and majority-vote (MV) rules accounting for a voter’s tendency 
to assume an opinion of a majority of its neighbors [1–21]. Specif-
ically, in the two-state MV model on a lattice [6] each voter as-
sumes the opinion of the majority of its neighbors with a probabil-
ity 1 − q and the opposite opinion with probability q, whereas the 
voter changes its initial opinions with probability 1/2, whenever 
there is a tie in its neighborhood. The control parameter q plays 
a role of temperature in equilibrium systems. On regular lattices, 
the two-state MV model displays a second-order phase transition 
from an ordered to a disordered state at a critical value qc . It has 
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been recognized that the two-state MV model belongs to the Ising 
model universality class [6–11]. In the limiting case of q = 0,1 af-
ter the update t + 1, the voter located on node i adopts the state 
with the spin

si(t + 1) = Θ

[
k∑
j

si
j(t)

]
, (1a)

where si
j(t) denotes the spin of the voter located on node j and 

the summation is over k neighbors of the voter located at node i, 
while

Θ(x) = sign(x), (1b)

whenever x �= 0, whereas

Θ(x = 0) takes the values 1 and −1 with equal probabilities.
(2a)

Recently, Lima [9] has introduced a three-state MV model in which 
the third opinion is neutral (s = 0), while the competing opin-
ions have opposite spins (s = ±1). In this three-state MV model, 

1 In this case the MV model coincides with the Ising model with the zero-
temperature Glauber kinetics and its ultimate fate is either a consensus or tie [4].
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each voter adopts the opinion of the majority of active voters in 
its neighborhood with probability 1 − q and the minority of ac-
tive voters with probability q, whenever a majority of active voters 
exists. Otherwise, the updating voter (active or uncommitted) as-
sumes the state with s equal to 1 or −1 with equal probabilities. 
Consequently, the uncommitted voters disappear after a few cy-
cles of N updates and the system’s fate is essentially the same as 
in the two-state MV model. Accordingly, in numerical simulations 
on square lattices it was found that the three-state MV model also 
belongs to the Ising model universality class [9] and in the case of 
q = 0 leads to the consensus or tie.

In order to model systems with a stable coexistence of minority 
and majority opinions, Shao et al. [22] have modified the two-state 
MV model such that the voter keeps its initial opinion if its neigh-
bors are in a tie. Accordingly, the model obeys Eq. (1) with

Θ(x = 0) = sign
[
si(t)

]
. (2b)

Consequently, voters holding the same opinion form clusters which 
cannot be invaded by the opposite opinion. In numerical simula-
tions it was found that the two-state non-consensus (NCO) model 
defined by Eqs. (1) and (2b) exhibits a percolation transition. 
A spanning cluster of voters holding the same opinion appears 
when the initial concentration of these voters is above a certain 
critical value fc [22–30]. It has been argued that the NCO model 
on a square lattice belongs to the same universality class as the 
invasion percolation [31].

In this work, we put forward a three-state MV model in which 
the voter becomes uncommitted if its active neighbors are in the 
tie, or all neighbors are uncommitted. Otherwise the voter adopts 
the opinion of the majority of active voters in its neighborhood. 
Accordingly, our three-state MV model also obeys Eq. (1) but with

Θ(x = 0) = 0. (2c)

We found that this model allows for a stable coexistence of three 
opinions in a stable non-consensus state. The composition of the 
stable non-consensus state is governed by the initial composition 
of system and is independent of the lattice size. Furthermore, we 
found that the stable state undergoes a second-order percolation 
transition similar to the one observed in the two-state NCO model 
studied in Refs. [22–24,31]. However, although both model share 
some common features, we found that they belong to different 
universality classes. Specifically, the values of critical exponents 
found in numerical simulations suggest that the three-state MV 
model defined by Eqs. (1) and (2c) belongs to the same universal-
ity class as the Ising percolation. This finding highlights the effect 
of updating rule for the tie between voter neighbors on the critical 
behavior of the modified MV models.

The rest of the paper is organized as follows. In Sec. 2 we intro-
duce the three-state MV model and describe details of numerical 
simulations. Sec. 3 is devoted to the results of numerical simu-
lations. The numerical findings are discussed in Sec. 4. The main 
results and conclusions are outlined in Sec. 5.

2. Three-state MV model

The studied system consists of N voters that reside in nodes of 
a square lattice (L × L = N) with four Newman neighbors (k = 4). 
The voter opinions are represented by spin-like variables si , where 
index i = 1, 2, ...N denotes the node position. The active voters 
have spins si = ±1, while the uncommitted voters have spin zero 
(si = 0). In this work, the positive spin is initially assigned to f N
randomly chosen nodes (0 < f < 1), while the rest of the nodes 
are assumed to have spin si = −1 (see Fig. 1a–c). So, the initial 
“magnetization” of system is equal to m0 = |2 f − 1|, while the ini-
tial concentration of the uncommitted voters is zero.

Fig. 1. Distributions of voters in: (a–c) initial ( f = 0.5) and (d–f) stable states on 
square lattices of size L = 20 (a, b, d, e) and L = 60 (c, f). White and grey nodes are 
occupied by active voters with σi = 1 and −1, respectively, whereas black nodes are 
associated with the uncommitted voters (σi = 0). In panels (a, b) the initially active 
voters that become the uncommitted in the final state are marked with ×.

Once the initial distribution of voters is defined, its evolution 
is governed by the update rule defined by Eqs. (1) and (2c). Up-
dates are repeated until a stable non-consensus state is reached 
and no more changes occur. In order to study the finite size scal-
ing, numerical simulations were performed on lattices of different 
size (L = 20, 40, 60, 80, 100, 150, 500, 1000) with periodic bound-
ary conditions. It is a straightforward matter to understand that 
the probability of active voters with spin s becoming a majority in 
the stable state P s( f ) is a monotonically increasing function of f
with symmetry around (P s, f ) = (0.5, 0.5), because two competing 
states (s = ±1) are symmetrical in the lattice of any size L. Notice 
that, generally, P1( f , L) + P−1( f , L) = 1 − P0( f , L), where P0( f , L)

is the probability that the stable state has magnetization equal 
to zero. Although the majority in the initial state tends to domi-
nate, on finite lattices the initial minority can become a majority 
in the stable state. However, as the lattice size increases P1( f , L)

approaches to a step function. So, in the limit of L → 0, the initial 
majority always becomes the majority in the stable state. Accord-
ingly, we study statistical distributions of the concentrations of 
active (p±1) and uncommitted (p0) voters in the stable state, while 
p1 + p−1 + p0 = 1 in each simulation. Then, we calculate the mean 
concentrations of the uncommitted voters 〈p0( f )〉 and the average 
“magnetization” of the stable state M( f ) = 〈m( f )〉 = 〈p1 − p−1〉 on 
lattices of different sizes. We also calculate the standard deviations 
σ [p0( f ), L] and σ [m( f ), L] obtained in 103 simulations with each 
f on lattices of each size L.

In the non-consensus stable state, active voters form clusters 
wherein they share the same opinion, while the uncommitted vot-
ers appear on the frontier between clusters of competing voters 
(see Fig. 1). We found that when the initial concentration of active 
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