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Amorphous solids or glasses are known to exhibit stretched-exponential decay over broad time intervals 
in several of their macroscopic observables: intermediate scattering function, dielectric relaxation 
modulus, time-elastic modulus, etc. This behaviour is prominent especially near the glass transition. 
In this Letter we show, on the example of dielectric relaxation, that stretched-exponential relaxation 
is intimately related to the peculiar lattice dynamics of glasses. By reformulating the Lorentz model 
of dielectric matter in a more general form, we express the dielectric response as a function of the 
vibrational density of states (DOS) for a random assembly of spherical particles interacting harmonically 
with their nearest-neighbours. Surprisingly we find that near the glass transition for this system (which 
coincides with the Maxwell rigidity transition), the dielectric relaxation is perfectly consistent with 
stretched-exponential behaviour with Kohlrausch exponents 0.56 < β < 0.65, which is the range where 
exponents are measured in most experimental systems. Crucially, the root cause of stretched-exponential 
relaxation can be traced back to soft modes (boson-peak) in the DOS.

© 2016 Published by Elsevier B.V.

1. Introduction

Since its first observation by Kohlrausch in 1847 [1], stretched-
exponential relaxation has been observed in the time-dependent 
relaxation of several (elastic, dielectric, electronic) macroscopic ob-
servables in nearly all structurally disordered solids. Ultimately, 
this behaviour represents one of the most common hallmarks 
of irreversibility in disordered systems. Over the last century, 
stretched-exponentials have been used in countless experimental 
settings to fit experimental data. Although it is common knowl-
edge that stretched-exponential relaxation relates somehow to 
spatially heterogeneous many-body interactions or to heteroge-
neous distribution of activation energy barriers [2,3], only very 
few models or theories are able to predict stretched-exponential 
relaxation from first-principle dynamics [4]. In fact, strictly speak-
ing, only two models recover stretched-exponential relaxation in 
well-defined specific situations. One is a model of electronic re-
laxation via non-radiative exciton-hole recombination where holes 
are randomly distributed traps that “eat up” the diffusing excitons 
[5–7]. As shown in Ref. [7], according to this model the density of 
not-yet trapped excitons decays at long times as ∼ exp(−td/d+2), 
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which gives a Kohlrausch exponent β = 0.6 in 3d. In spite of the 
elegance of this model, it is not straightforward to apply it to elu-
cidate Kohlrausch relaxation in glasses. The other model is the 
Mode-Coupling Theory (MCT) of supercooled liquids, which gives 
a solution that can be approximated with a stretched-exponential 
for the intermediate scattering function at temperatures well above 
the glass transition [8–10].

Clearly, these two models are quite specific and limited in their 
applicability [11,12]. For example, starting with Kohlrausch orig-
inal experiment using the Leyden glass jar, most of the physical 
systems where stretched-exponential behaviour has been observed 
are represented by disordered solids, well below the glass transi-
tion where MCT is no longer applicable. This is a very important 
topic in electrical engineering, where dielectric insulators in the 
solid state are typically employed for all high-voltage transmission 
applications [13].

Hence, while stretched-exponential relaxation is ubiquitous in 
the solid-state, it has not been possible to trace it back to a 
well-defined mechanism in the many-body dynamics, or to a well-
defined microscopic descriptor of the dynamics. In this Letter, we 
re-examine the problem from the point of view of lattice dynam-
ics, suitably evaluated for a model of disordered solids. Focusing 
on the paradigmatic case of dielectric relaxation, it is shown that 
stretched-exponential decay of the dielectric modulus over many 
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Fig. 1. Goldhaber–Teller model of a disordered dielectric solid. Spherical particles 
with positive and negative charge (or equivalently, neutral) are inter-dispersed ran-
domly. Each particle interacts with its nearest-neighbours (which bear opposite 
charge) uniquely via an attractive harmonic potential (linear springs, in red). Note 
that the charges do not contribute explicitly to the harmonic inter-particle interac-
tion. (For interpretation of the references to colour in this figure legend, the reader 
is referred to the web version of this article.)

decades in time is recovered by the numerical solution to the 
Lorentz sum-rule with a DOS that takes into account the crucial 
role of so-called boson-peak modes over the Debye ∼ ω2

p law. 
Since the origin of these modes lies in the Ioffe–Regel crossover 
[14–17] at which phonons are scattered off by the disorder (in par-
ticular, by the absence of inversion-symmetry of the lattice [18]), it 
is possible to establish a direct link between stretched-exponential 
relaxation and the quasi-localization of phonons by the disorder at 
the boson peak.

2. Goldhaber–Teller model of disordered dielectric

In the following, we work within the assumption of disor-
dered elastically bound classical charges, which is the same as the 
Goldhaber–Teller model originally developed to explain the giant 
dipole resonance in atomic nuclei [19,20]. In this model, schemati-
cally depicted in Fig. 1, two types of charges, positive and negative 
(or, equivalently, positive and neutral, as in the Goldhaber–Teller 
model for nuclei), are inter-dispersed randomly in space. Every 
positive charge is surrounded by nearest-neighbours (which are 
negative, or neutral), to each of which it is bound by an attrac-
tive harmonic potential. In a dielectric solid or in a supercooled 
ionic liquid [21], an attraction minimum around which harmonic 
approximation can be taken, may come from a superposition of 
electrostatic attraction and van der Waals attraction, competing 
with short-range steric repulsion (while in the original Goldhaber–
Teller model the attraction comes, evidently, from the strong nu-
clear force).

In order to evaluate the dielectric response (below) on the basis 
of lattice dynamics, we make use of a DOS ρ(ωp) obtained by nu-
merical diagonalization of a model random lattice of harmonically-
bound spherical particles. This random network is obtained by 
driving a dense Lennard–Jones liquid into a metastable glassy en-
ergy minimum with a Monte-Carlo relaxation algorithm, and then 
replacing all the nearest-neighbour pairs with harmonic springs all 
of the same spring constant, and with a relatively narrow spring-
length distribution [18]. Springs are then cut at random in the 
lattice to generate random lattices with variable mean coordina-
tion Z , from Z = 9 down to the isostatic Maxwell limit Z = 2d = 6. 
It is important to notice that this simplified model DOS is appli-
cable only to systems where the building blocks are spherical and 
interact with central-force potentials. The DOS obtained from nu-
merical diagonalization of the simulated network is expressed in 
terms of dimensionless eigenfrequencies ωp .

In this random assembly of particles, only nearest-neighbour in-
teractions are present, and the number Z represents the average 
coordination number or average number of nearest-neighbours per 

Fig. 2. Density of states (DOS) with respect to eigenfrequency ωp at Z = 6.1, i.e. 
close to the marginal stability limit Z = 6 that we identify here as the solid–liquid 
(glass) transition, Z = 7, Z = 8, Z = 9, which are marked as solid, dashed, dotdashed 
and dotted lines respectively.

particle. Also, the DOS obtained from diagonalization of the model 
random networks, depends sensitively on the average coordination 
number Z . For example, the boson peak frequency drifts towards 
lower values of ωp upon increasing Z , according to the scaling 
ωB P

p ∼ (Z − 6), as observed also in random packings [23]. This be-
haviour is also consistent with the common observation that in 
glasses the boson peak frequency shifts to lower frequency upon 
increasing the density or the pressure [24]. Hence, Z is the crucial 
control parameter of the relaxation process, which, in a real e.g. 
molecular glass, changes with T . Therefore, in order to use our nu-
merical DOS data in the evaluation of the dielectric function, we 
need to find a physically meaningful relation between Z and T at 
the glass transition.

In all experimental systems which measure the T -dependent 
material response, the temperature is varied at constant pres-
sure, which implies that thermal expansion is important. Follow-
ing previous work, we thus employ thermal expansion ideas [25]
to relate Z and T . Upon introducing the thermal expansion co-
efficient αT = 1

V (∂V /∂T ) and replacing the total volume V of 
the sample via the volume fraction φ = vN/V occupied by the 
molecules (v is the volume of one molecule), upon integration we 
obtain ln (1/φ) = αT T + const. Approximating Z ∼ φ locally, we get 
Z = Z0e−αT T . Imposing that Z0 = 12, as for FCC crystals at T = 0
in accordance with Nernst third-law principle, we finally get, for 
the example of glycerol, Z ≈ 6.02 when T = 184 K. This is very 
close to the reported T g for this material [22]. For Z = 7, 8 and 9, 
the corresponding temperatures are calculated to be T = 144 K, 
108 K and 77 K.

It is seen in Fig. 2 that for the case Z = 6.1, i.e. very close to 
the solid–liquid rigidity transition that occurs at Z = 6, a strong 
boson peak is present in the DOS. The continuum Debye regime 
∼ ω2

p is not visible or absent, whereas an infinitesimal gap be-
tween ωp = 0 and the lowest eigenfrequency exists. Hence, under 
conditions close to the glass transition, the vibrational spectrum is 
dominated by soft modes at low frequency. Upon increasing Z , the 
extent of soft modes at low frequency decreases markedly while 
the Debye ∼ ω2

p regime extends to higher frequencies. At the high-
est Z values, the relics of van Hove singularities that characterize 
FCC crystals become visible, because medium-range order has to 
increase upon increasing the coordination Z [18], towards the FCC 
limit Z = 12. In particular, the local degree of centrosymmetry 
of the nearest-neighbours is the crucial form of order which in-
creases upon increasing Z and correlates directly with the boson 
peak [18]. Note that Z0 = 12 for FCC is independent of density only 
if the thermal fluctuations are neglected (as is the case at T = 0
or for athermal systems, e.g. hard spheres). At a finite T , defects 
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