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Different models of coupled oscillators with parity-time (PT) symmetry are studied. Hamiltonian 
functions for two and three linear oscillators coupled via coordinates and accelerations are derived. 
Regions of stable dynamics for two coupled oscillators are obtained. It is found that in some cases, an 
increase of the gain-loss parameter can stabilize the system. A family of Hamiltonians for two coupled 
nonlinear oscillators with PT-symmetry is obtained. An extension to high-dimensional PT-symmetric 
systems is discussed.
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1. Introduction

A set of coupled oscillators is a basic model of interacting sys-
tems. Many important ideas, such as the energy exchange, the 
eigenfrequency splitting and normal modes, are introduced in the 
study of this model, see e.g. [1,2].

Many types of linear coupled oscillators can described by a 
Hamiltonian, which is a quadratic function of coordinates and mo-
menta. Energy is conserved in Hamiltonian systems, therefore con-
servative systems are associated usually with ideal systems without 
dissipation (loss) and amplification (gain). Let us consider a set of 
two coupled oscillators:

ẍ1 + 2γ ẋ1 + ω2
0x1 + κx2 = 0,

ẍ2 − 2γ ẋ2 + ω2
0x2 + κx1 = 0 (1)

where x1 and x2 are the coordinates of the oscillators, γ is the 
parameter of dissipation (for x1) and amplification (for x2), ω0 is 
the frequency of a single oscillator, and κ is the coupling parame-
ter. The overdot denotes the derivative on t . Model (1) represents 
an open system with energy flow from the second oscillator (as-
suming γ > 0) to the first oscillator. System (1) has been studied 
in Refs. [3–6]. Surprisingly, it was found in Ref. [5] that system (1)
has the corresponding Hamiltonian.

Model (1) is a simple example of systems with parity-time (PT) 
symmetry [7,8]. Basically, this means that the system is invari-
ant under inversion of both space and time. If one interchanges 
x1 and x2, and change t to −t , Eqs. (1) remains the same. Usu-
ally, PT-symmetric systems are stable for some range of the system 
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parameters, and they become unstable when a certain parameter 
exceed the symmetry breaking threshold [7].

A notion of PT-symmetry came from attempts to extend quan-
tum mechanics beyond Hermitian operators [9]. A typical PT-
symmetric Hamiltonian has a complex-valued potential U (r). The 
imaginary part of U (r) characterizes amplification and dissipation 
of the wave function. Therefore, a PT-symmetric quantum system 
is a model with distributed gain and loss. When gain and loss 
are well balanced, the system is in a stationary state. Later, this 
idea was expanded to other fields of physics, such as classical me-
chanics, electronics, and optics. The idea is very promising in op-
tics, where a number of interesting applications has been realized. 
These include the double refraction, unidirectional light propaga-
tion [10–13], perfect absorbers [14] and lasers [15,16].

In present paper, firstly, we present various physical sys-
tems that obey PT-symmetry. Then, we consider an extension of 
model (1), which is Hamiltonian as well. Moreover, we find nonlin-
ear generalization of the model, which is also Hamiltonian, similar 
to that analyzed in Ref. [17]. Systems of three and more degrees of 
freedom are also discussed.

2. PT-symmetric models

In this Section, we present several models with PT-symmetry. 
The aim of this Section is to demonstrate that a PT-symmetric 
model is not an abstract notion, but it can describe real physical 
systems. A PT-symmetric system requires an element that provide 
amplification, or negative dissipation. Such elements are discussed, 
for example, in Ref. [1], and we use them to construct different 
types of PT-symmetric systems.

We start with two coupled oscillators shown in Fig. 1(a). Two 
masses, m1 and m2, are connected with each others and walls by 
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Fig. 1. Examples of PT-symmetric models: (a–d) mechanical systems, (e) an electrical 
system, and (f) coupled optical waveguides, where the right (darker) waveguide has 
resonance atoms.

means of springs. Mass m1 is placed on a fixed frictionless surface, 
however there is dissipation of energy due to surrounding media. 
We assume that the dissipation force is proportional to the os-
cillator velocity. The second mass is placed on a conveyor, which 
moves with constant velocity V c . The conveyor drags the mass be-
cause of friction. In the absence of coupling between the masses, 
the equation of motion of m2 is the following [1]:

ẍ2 + �ẋ2 + ω2
0x2 = F (ẋ2 − V c), (2)

where F is the force that depends on the relative velocity of 
the body and the conveyor. For small velocities ẋ2, one can ex-
pand F ≈ F (V c) + F ′(−V c)ẋ2. A constant force F (V c) results in 
a shift of the stationary point for x2, while the second term re-
sults in modification of the dissipation parameter. By a proper 
choice of F ′(−V c), one can make the dissipation parameter neg-
ative, � − F ′(−V c) = −2γ , which results in amplification. Then, 
with a corresponding choice of the system parameters, the model 
in Fig. 1(a) is reduced to Eqs. (1).

Oscillators in Fig. 1(a) are coupled via coordinates x1 and x2. 
However, it is possible to make inertial coupling between oscil-
lators as shown in Fig. 1(b). Mass m1 oscillates with dissipation 
inside m2. Amplification for mass m2 is achieved by means of a 
conveyor, as in Fig. 1(a). One can show that oscillators in this case 
are coupled via acceleration. (Actually, the equations of motion can 
be transformed further such that only coordinate coupling remains, 
however, the initial equations, derived from the Lagrangian, have 
coupling via acceleration, see e.g. Ref. [2].)

A PT-symmetric mechanical system can be realized with a set 
of two pendulums coupled via a spring, see Fig. 1(c). Each pendu-
lum has a sleeve on the upper end of the rod. This sleeve is put 
on a shaft (gray circles in Fig. 1(c)). The shaft of the second pendu-
lum rotates with constant angular frequency �. The rotating shaft, 
similar to the moving conveyor in Figs. 1(a) and (b), introduces 
amplification for the second pendulum. We mention that a sin-
gle pendulum with rotating shaft is called the Froude pendulum, 
see e.g. [1]. In linear approximation, the dynamics of pendulums is 
described by Eqs. (1). Oscillators in Fig. 1(c) are coupled via coor-
dinates φ1 and φ2, similar to those in Fig. 1(a).

It is possible also to introduce acceleration coupling between 
the pendulums, as in a double pendulum presented in Fig. 1(d). 
The first pendulum in Fig. 1(d) is attached to the second one via 
a movable joint. The second pendulum is the Froude pendulum, so 
that the rotating shaft provides amplification.

The next example is a pair of oscillatory circuits, presented 
Fig. 1(e). Two RLC circuits are coupled with each other via mutual 
inductance M (acceleration coupling) and capacitor Cc (coordinate 
coupling). The main difference of this circuit from conventional 
ones is that R2 has negative resistance, providing gain in the sys-
tem. Negative resistance can be realized using a tunnel diode or an 
operational amplifier. PT-symmetric electronic circuits have been 
studied in Refs. [3,4]. Also, a system of two Josephson junctions 
with capacitive coupling is modeled by two pendulums coupled 
via acceleration [18]. Then, it is possible to realize a PT-symmetric 
system in such superconducting circuits by implementing the neg-
ative resistance in either junction.

The last example in this Section is a system of two circular 
optical waveguides in Fig. 1(f). The waveguides of a size of few 
microns and less are coupled due to interaction of evanescent 
fields, therefore it is a coordinate coupling. The second waveg-
uide has resonance atoms inside that can be pumped by external 
light. This creates amplification in the waveguide, so that with a 
proper choice of parameters, the system can be considered as PT-
symmetric. Similar systems are studied, for example, in Refs. [5,
15,16]. The oscillation of electromagnetic fields inside the waveg-
uides is described in linear approximation by equations similar to 
Eqs. (1).

It is interesting also to consider the quantum behavior of cou-
pled PT-symmetric oscillators. Several examples are presented in 
Refs. [5,19], see also reviews [7,8]. In Ref. [5], the twofold bifurca-
tion is observed in the classical and quantized versions of the sys-
tem. In Ref. [19], a relation between a symmetric quadratic Hamil-
tonian (c.f. Sec. 3) and a pseudo-Hermitian matrix is obtained. We 
expect that coupling via acceleration can add new features to the 
dynamics of quantum oscillators.

The examples presented in this Section shows that two types 
of coupling exist, namely via coordinates and via accelerations. In 
the next Section, we obtain a model that include both types of 
coupling.

3. Hamiltonian systems of PT-symmetric oscillators

3.1. Two linear oscillators

In this Section we derive an extension of system (1), which 
is also Hamiltonian. We start with a general expression for the 
Hamiltonian written as a quadratic form:

H = zT A z, (3)

where A = {aij, i, j = 1, . . . , 4} is a 4 × 4-matrix, z = (x1, x2, p1,

p2)
T is a column vector, p1 and p2 are canonical momenta of 

coordinates x1 and x2, respectively, and superscript T denote trans-
position. Without loss of generality, one can assume that A is 
symmetric, since a quadratic form with an anti-symmetric matrix 
equals zero.

The equations of motion are obtained from the Hamilton equa-
tions:

ẋk = ∂ H

∂ pk
, ṗk = − ∂ H

∂xk
, k = 1,2. (4)

From equations for ẋk , we find the relation between momenta and 
velocities. Then, equations for ṗk give the following equations of 
motion
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