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In this paper, the effects of random Ag nanoparticle used within the active layer of Si based thin film 
solar cell are investigated. To avoid the complexity of taking into account all random nanoparticles, 
an effective dielectric function for random Ag nanoparticles and Si nanocomposites is used that is the 
Maxwell–Garnet theory along with Percus–Yevick correction term. Considering the energy reservation 
law and using the effective dielectric function, the absorbance of the active layer, therefore, the solar 
cell’s maximum short current density is obtained. Also, the maximum external quantum efficiency of the 
solar cell is obtained using the optimum values for the radius and filling fraction of Ag nanoparticles.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Solar energy, unlike the fossil fuels, is an endless source of en-
ergy for energy consuming life activities. The solar cell is a device 
which converts electromagnetic energy into electrical energy and 
the conversion process is based upon the photovoltaic effect [1]. 
Unfortunately, the cost of electricity generated by a solar cell is 
higher than one generated using conventional methods, especially 
in the case of wafer based crystalline silicon (C–Si), which depends 
on the cost of silicon that is an expensive medium with weak 
absorbing ability. A simple approach to reduce the cost of these 
devices is decreasing the volume of used material by fabricating 
thinner devices. Thin-film solar cells, having thicknesses usually in 
the range 100–150 μm, are deposited on cheap substrates such as 
glass, plastic or stainless steel [2]. They are made from a variety 
of semiconductors including cadmium telluride and copper indium 
diselenide [3]. On the other hand, silicon is an indirect semicon-
ductor and its absorbance in near-band gap region is ineffective, 
thus reducing the thickness extremely affects the performance of 
the device. So, a way to overcome this problem is using the light 
trapping techniques, in order to increase the absorbance of de-
vice [4].

Many light trapping methods have been proposed in order to 
achieve high efficiency in thin film solar cells, such as: coupling of 
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incident light at the front side, reflection at the back side, inter-
mediate reflectors in multi-junction solar cells, light scattering at 
rough interfaces, etc. [5]. A novel method that has emerged lately 
is using of the scattering from noble metal nanoparticles excited 
at their surface plasmon resonance. Metal nanoparticles are strong 
scatterers of light at wavelengths near the plasmon resonance, 
which is due to a collective oscillation of the conduction elec-
trons in the metal [3]. Recently, metallic nanoparticles have been 
widely used to enhance photovoltaic performance [6–8]. The res-
onance of metallic nanoparticles strongly depends on size, shape, 
and spacing of the metallic particles as well as the dielectric prop-
erties of the surrounding medium [2]. In most research works, 
models are based on single nanoparticles, but in particle ensem-
bles additional movement in resonance frequency are expected to 
occur due to electromagnetic interactions between the nanoparti-
cles [9]. It should mention that, for nanoparticles much smaller 
than the wavelength of light, the dominant scattering mechanism 
is Rayleigh scattering [10].

Recently, it has been shown that using the metallic nanoparti-
cles, deposited on the silicon surface, could significantly increase 
the absorption of light over a broad spectral range, giving rise 
to a stronger photocurrent response [8]. From experimental point 
of view, random metal–dielectric nanocomposites are easy to pre-
pare using thin film deposition techniques. But the geometry that 
nanoparticles randomly distributed through the active layer of so-
lar cell has not studied. In this paper, it has been proposed to 
use such composites to tune the operational wavelength of a solar 
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Fig. 1. Schematic structure of random plasmonic solar cell.

cell in a broad spectral range, by just adjusting the random metal 
nanoparticle’s filling fraction and radiuses [11].

2. Model description

The simple schematic cross sectional view of random Ag 
nanoparticle distributed in silicon solar cell is shown in Fig. 1, 
where an ITO (indium tin oxide) layer is a transparent anode as 
the front side of solar cell.

In order to have a comparison between the performances of 
proposed solar cell with a common thin film silicon solar cell, we 
investigated the absorption coefficient of silicon and also absorp-
tion coefficient of Ag-nanoparticle doped silicon nanocomposite. 
For the case of bare silicon (without Ag nanoparticles), we have 
used absorption coefficient calculated from the k-selection rule in 
the matrix element for a bulk semiconductor, as follows [12]:

α
(
μm−1) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−0.425(h̄ω − E g)
3 + 0.757(h̄ω − E g)

2

− 0.0224(h̄ω − E g) + 10−4

(1.1 eV < h̄ω < 1.5 eV)

0.0287 exp[2.72(h̄ω − E g)]
(h̄ω > 1.5 eV)

(1)

where h̄ω is the energy of incident photon and E g is the band gap 
energy of silicon.

We have used the Lorentz–Drude model for describing the di-
electric function of Ag nanoparticles, which has a good promising 
coincidence with experimental data. i.e., Lorentz–Drude model un-
like the Drude model, takes into account of both intraband and 
interband transitions. In fact, the Lorentz–Drude model is able to 
describe all resonances in the blue-end and provide an accurate fit 
with the real dielectric function of silver, over the whole frequency 
range of interest. The dielectric function in Lorentz–Drude model is 
expressed as

ε(ω) = ε∞ +
K∑

k=0

fkω
2
p

ω2
k − ω2 + iωΓk

(2)

where ε∞ is the optical dielectric constant at infinite frequency 
(for isotropic plasma-like metals = 1), k is the number of oscilla-
tors with frequency ωk , and fk and Γk are strength and damping 
constant, respectively, and ωp is the plasma frequency [13].

The propagation of electromagnetic wave and its scattering in 
a medium with heterogeneity in its dielectric properties, has been 
a fundamental problem for many years [14]. On the other hand, 
the dielectric function is one of the most important quantities 
describing the optical properties of a medium [15]. Analytical in-
vestigation of a random two component system requires comput-
ing the exact local fields inside the composite and their environs, 
caused by the inhomogeneities, using a first principle approach, 
i.e. Maxwell’s equations. In the general case of a spatially random 
structure, solving this problem analytically appears as a formidable 

task. These difficulties have led numerous groups to study the 
partial differential equations for local fields, using different com-
putational techniques [16]. An alternative way is to use effective 
medium theory (EMT). EMT defines an effective dielectric function 
for a composite material in terms of dielectric function of its com-
ponents and their geometrical arrangement [11] and it could be 
applied for localized surface plasmons occurring in metal nanopar-
ticles [17–21].

Over the last century, numerous effective medium theories have 
been proposed. Maxwell–Garnett (MG) expressions are the most 
successful expression to explain the effective behavior of a com-
posites. MG effective medium theory provides a simple model for 
calculating the macroscopic optical properties of materials with 
a dilute inclusion of spherical nanoparticles. Also, it includes the 
dipolar interaction between particles, through the averaged Lorentz 
local field [17,22,20]. However, the Percus–Yevick equation is an 
improved representation of the pair distribution function for ap-
preciable concentration of nanoparticles [23].

We consider a slab consists of N spherical metal nanoparticles 
that are randomly distributed in silicon. An electric field in ‘z’ di-
rection is applied to the slab. In the case of isolated inclusions em-
bedded in a dielectric matrix, the Maxwell–Garnett formula reads 
as

εeff − ε

εeff + 2ε
= f s

εs − ε

εs + 2ε
(3)

where εeff is the effective dielectric function, ε is the dielectric 
function of the embedding medium, εs is the dielectric function of 
the metal nanoparticles and f s is the filling fraction of metal in 
the composite [4]. The induced dipole moment of ith scatterer can 
be expressed as

Pi = ẑ
4πa3(εs − ε)/(εs + 2ε)

1 − f s(εs − ε)/(εs + 2ε)
E (4)

where a is the radius of nanoparticles and E is the applied electric 
field. Calculating the scattered field from the ith scatterer, the total 
scattered intensity, and total scattered power and dividing it to the 
input power, the effective dielectric function is obtained as

εeff = ε

{(
1 + 2 f s(εs − ε)/(εs + 2ε)

1 − f s(εs − ε)/(εs + 2ε)

)

+ i2 f sk
3a3

∣∣∣∣ (εs − ε)/(εs + 2ε)

1 − f s(εs − ε)/(εs + 2ε)

∣∣∣∣
2

{1 + L/N}
}

(5)

where k is the wavenumber, and L is expressed as

L = N2

V
Re

{∫
drg(r)eik.r

}
(6)

In which V is the volume containing the scatterers, and g(r)
is known as the pair distribution function in the position ‘r’. In 
Percus–Yevick approximation, L is shown as [24]

L = N

[
(1 − f )4

(1 + 2 f )2
− 1

]
(7)

Considering the effective medium dielectric function εeff , the 
reflectance and transmittance for normal incident light, can be 
written as [8]

R =
∣∣∣∣ (−1 + εeff )[−1 + e4iak

√
εeff ]

e4iak
√

εeff (−1 + εeff )
2 − (1 + εeff )

2

∣∣∣∣
2

T =
∣∣∣∣ 4εeff e2iak(−1+√

εeff )

e4iak
√

εeff (−1 + εeff )
2 − (1 + εeff )

2

∣∣∣∣
2

(8)
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