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In this article, the thermal entanglement between π-electronic states in a monolayer silicene sheet 
and a single mode quantized electromagnetic field is investigated. We assume that the system is in 
thermal equilibrium with the environment at a temperature T , so that the whole system is described 
by the Boltzmann distribution. Using the states of total Hamiltonian, the thermal density matrix and, 
consequently, its partially transposed one is computed, giving rise to the determination of negativity. 
Our analytical calculations, along with representative figures, show that the system is separable at zero 
temperature, exhibits a maximum, at a specific temperature, and asymptotically vanishes. Along these 
lines we also report the effects of electron–photon coupling, as well as the silicene buckling, on the 
entanglement. Specifically, we demonstrate that the maximal value of entanglement is larger for stronger 
electron–photon coupling, while it decreases for larger buckling effect. Moreover, we show that the gap 
in the total energy spectrum remains intact for any value of the buckling parameter. There is, however, 
one state whose energy changes sign, at a specific buckling, indicating a change of phase.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Quantum entangled states have been recognized as the mile-
stone of quantum information processing, especially, quantum tele-
portation, quantum computation, quantum cryptography [1–6]. In 
this respect, it is desirable that the states participating in the 
entanglement should naturally posses long relaxation time and 
length [7,8], to preserve the information placed on it. As a result, 
one seeks an entity, with limited number of states, which fulfills 
such requirements. Moreover, for practical purposes in quantum 
information processing, it is essential to explore entanglement in 
solid materials [9,10]. To this end, the electronic states in nanos-
tructures, particularly, honeycomb materials, have been proposed 
as most suitable for the generation and, in turn, characterization 
of entanglement [11–14]. Meanwhile, it is also of advantage that 
the stored information be transferred with highest possible speed. 
Motivated by these facts, the composite system of π -electrons 
in graphene or silicene and single-mode photons has attracted 
immense interest [15–17]. In the present article, therefore, we 
report an extensive investigation of entanglement between the 
π -electronic states in silicene and photons. The novel idea of our 

* Corresponding author.
E-mail addresses: rastgooo@gmail.com (S. Rastgoo), golshan@susc.ac.ir

(M.M. Golshan).

investigation is the fact that the whole system is assumed to be at 
thermal equilibrium with a heat reservoir, so that the electronic, 
as well as photonic, states occur according to the Boltzmann dis-
tribution.

The technical process of synthesizing silicene, a honeycomb 
monolayer of silicon atoms, has by now been well established and 
advanced that research on the properties of silicene has become 
the subject of enormous reports [18–20]. Even though most of the 
delicate features (such as long relaxation time and length [7,8], 
to name a few) of graphene, a honeycomb monolayer of carbon 
atoms, may be straight forwardly transferred to silicene, they dras-
tically differ in one aspect. In silicene, as opposed to graphene, the 
so-called “A” and “B” sublattices are shifted relative to each other, 
giving rise to the buckling effect [21,22]. A profound consequence 
of the buckling effect is the fact that it breaks the space inversion 
symmetry and, as a result, a quantum mechanical change of phase 
may be anticipated [23–25]. Recalling the fact that the buckling ef-
fect can be externally controlled, one also expects that the degree 
of entanglement between π -electronic and photonic states can 
also be externally controlled. Moreover, there exists an intrinsic 
spin-orbit coupling, much larger than that in graphene [26], which 
manifests itself in the intrinsic generation of quantum spin Hall 
effect [27]. Since the spin-orbit coupling involves the sublattices 
operators, it also affect the energy band structure, consequently, 
the behavior of entanglement. In what follows, therefore, we con-
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sider the interaction of a single mode, plane-polarized quantized 
electromagnetic field with π -electrons in silicene and report the 
properties of photon–electron thermal entanglement, in which the 
states involved obey the Boltzmann distribution.

To accomplish our goal, we first present the governing Hamil-
tonian and discuss the commuting Casimir operator that we in-
troduced in [28]. The Hamiltonian, expressed in the bases of the 
latter, is then block-diagonal and thus the total energy eigenvalues, 
from which the thermal density operator is constructed, are cal-
culated straightforwardly. An illustration of the energy spectrum 
versus the buckling parameter reveals that, in spite of the interac-
tion with photons, there exists an energy state which changes sign 
at some value of the buckling parameter, giving rise to a quantum 
phase transition [23–25]. Furthermore, we employ the concept of 
negativity to determine the temperature-dependent degree of en-
tanglement between the π -electrons and photons. To this end, a 
partial transposition of the thermal density matrix is made and 
the negative eigenvalues of the result are calculated. Consequently, 
we demonstrate that the system is separable at absolute zero tem-
perature, but reaches a maximal entanglement and asymptotically 
becomes separable again as the temperature rises. A noteworthy 
point in the behavior of negativity is that for low buckling param-
eter and at extremely low temperature, a minute change in the 
latter results a rapid increase in the entanglement, confirming the 
quantum phase change.

This article is organized as follows. In the next section, af-
ter presenting the system Hamiltonian, we employ the bases of 
the Casimir operator introduced in [28] to calculate and discuss 
the states of the system. Section 3 is devoted to the construction 
of the thermal density operator from the Boltzmann distribution, 
followed by the manner of partial transposing it. The procedure 
of calculating the negative eigenvalues of the partially transposed 
density matrix along with a discussion of negativity are also the 
subject of this section. In Sec. 4 we explicitly compute the negativ-
ity for the system in hand, illustrating its behavior versus temper-
ature and (or) the buckling parameter (electron–photon coupling). 
The more important findings of our report are highlighted in the 
concluding section.

2. The model

The present section is devoted to a brief review of the system’s 
total Hamiltonian and its diagonalization. In the following section 
the eigenvalues and eigenstates so obtained shall be employed to 
construct the thermal density operator. The total Hamiltonian of 
π -electrons in a silicene sheet, interacting with a single mode, 
plane-polarized quantized electromagnetic field of frequency ω, 
reads [29,30],

H = ατ(σ+a + σ−a†) + (λS O τ sz − �z)σz + h̄ω a†a. (1)

In writing Eq. (1) it is assumed that the silicene sheet defines 
the x–y plane while the vector potential (quantized) is taken as, 
�A =

√
h̄

2ε0 V ω (a + a†)x̂, with a† (a) being the photonic creation (an-

nihilation) operator. The fact that free π -electrons behave as Dirac 
particles propagating at Fermi speed, v f (� 5 × 105 m

s in silicene 
[29]) is implicit in Eq. (1). Moreover, the operators in Eq. (1) are 
pseudospin, �σ (acting upon the sublattice states, |A(B)〉 with the 
ladder operators σ± = |A(B)〉〈B(A)|), spin, �s (acting upon the spin 
states | + (−)〉 with the ladder operators s± = | + (−)〉〈−(+)|), and 
valley, �τ (acting upon the valley states |K ′(K )〉 with the ladder op-
erators τ± = |K ′(K )〉〈 K (K ′)|). The first term in Eq. (1) describes 
the electron–photon interaction with a strength, α = ev f

√
h̄

2ε0 V ω

(e and V denote the electronic charge and electromagnetic field 
quantization volume, respectively) while the second term, fre-
quently known as the mass term, consists of spin-orbit coupling 

at different valley sites with a strength of λS O (= 3.9 to 7.9 meV
[31]) and the buckling effect through �z . As is well known the 
latter, with a direct influence on electron–photon entanglement, 
may be externally varied from vanishingly small values up to 2λS O
[31]. It is also in order to mention the fact that Eq. (1) is valid 
only at the Dirac points and under the rotating-wave approxi-
mation. The combined Hilbert space is thus swept by the basis, 
|A(B)〉 ⊗ |n〉 ⊗ |K (K ′)〉 ⊗ |±〉 .= |A(B), n, K (K ′), ±〉, where n defines 
the photonic Fock states. The matrix representation of the Hamil-
tonian of Eq. (1) in these bases is evidently of infinite dimensions, 
but reducible. The Hamiltonian may be reduced by noting that the 
operators,

N̂e = a†a + σ+σ− + s+s− + τ+τ− (2)

and,

N̂sτ = s+s− + τ+τ−, (3)

commute with each other and the total Hamiltonian, so that they 
form the constants of motion. Physically, N̂e with eigenvalue Ne
gives the total excitations in the system while ˆNsτ with eigenval-
ues Nsτ indicate the sum of spin and valley excitations. To this 
end, we have assigned the values one (zero) to sublattice |A〉 (|B〉), 
spin up (down) state and valley state |K ′〉 (|K 〉). The Hamilto-
nian is block diagonal with respect to the eigenvalues (= Ne) of 
N̂e which then limits the valley and spin states appearing in each 
block. The eigenvalues of N̂sτ are clearly Nsτ = 0, 1 and 2 with the 
condition that Nsτ ≤ Ne . The first block corresponds to Ne = 0 is 
1 × 1 with one basis |B, 0, K , −〉, while for Ne = 1 it is 4 × 4 with 
four bases, |B(A), 1(0), K , −〉 and |B, 0, K (K ′), +(−)〉. This block 
consists of two 2 × 2 subblocks corresponding to the eigenval-
ues, Nsτ = 0, 1. The next block corresponds to Ne = 2 and is a 
7 × 7 matrix with the bases, |B(A), 2(1), K , −〉, |B(A), 1(0), K , +〉, 
|B(A), 1(0), K ′, −〉 and |B, 0, K ′, +〉. This block consists of one 1 ×1
and three 2 × 2 subblocks. For total excitations larger than 2, 
the blocks are all 8 × 8, comprising of four 2 × 2 subblocks, 
formed by the bases, |B, n, K , −〉, |A, n − 1, K , −〉, |B, n − 1, K , +〉, 
|A, n − 2, K , +〉, |B, n − 1, K ′, −〉, |A, n − 2, K ′, −〉, |B, n − 2, K ′, +〉
and |A, n − 3, K ′, +〉. The band structure of the system is obtained 
by diagonalizing of a number of 2 × 2 matrices and two diago-
nal elements related to the two 1 × 1 blocks. The number of total 
excitations characterizes the number of 2 × 2 matrices.

Despite the fact that we have obtained analytical expressions 
for the eigenvalues and eigenstates of the total Hamiltonian, for 
brevity we avoid stating the results here. The corresponding iden-
tity operator reads,

2∑
Ne=0

3Ne+1∑
i=1

|ψNe,i〉〈ψNe,i| +
∞∑

Ne=3

8∑
i=1

|ψNe,i〉〈ψNe,i | = 1, (4)

where |ψNe,i〉 are the eigenvectors of the total Hamiltonian and 
each block is labeled by the subscript i. In the following section 
we utilize the eigenstates and the eigenvalues of the total Hamil-
tonian of Eq. (1), expressed as the identity in Eq. (4), to calculate 
the thermal density operator and consequently the negativity.

3. Thermal density operator; the negativity

The mixed state of a system in equilibrium with a heat reser-
voir at a temperature T is given by the thermal density operator,

ρ = −βH

Z
, (5)

where Z = ∑2
Ne=0

∑3Ne+1
i=1 e−βENe ,i + ∑∞

Ne=3
∑8

i=1 e−βENe ,i is the 
partition function and β−1 = K B T , with K B the Boltzmann con-
stant, is the thermal energy. Using the identity of Eq. (4), the 
thermal density operator becomes,
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