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In the context of time series analysis considerable effort has been directed towards the implementation 
of efficient discriminating statistical quantifiers. Very recently, a simple and fast representation space 
has been introduced, namely the number of turning points versus the Abbe value. It is able to separate 
time series from stationary and non-stationary processes with long-range dependences. In this work we 
show that this bidimensional approach is useful for distinguishing complex time series: different sets of 
financial and physiological data are efficiently discriminated. Additionally, a multiscale generalization that 
takes into account the multiple time scales often involved in complex systems has been also proposed. 
This multiscale analysis is essential to reach a higher discriminative power between physiological time 
series in health and disease.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Typically, time series of measured variables are employed to 
analyze the dynamical behavior of complex systems. These tem-
poral records need to be suitably characterized in order to reach 
a more reliable comprehension of the underlying nature of the 
phenomenon of interest. Obviously, this understanding is essen-
tial for modeling and forecasting purposes. In particular, numerous 
algorithms for quantifying the disorder and complexity of time se-
ries generated from nonlinear dynamical systems have been devel-
oped. Without being exhaustive, we can mention Lempel–Ziv com-
plexity [1], correlation dimension [2,3], Lyapunov exponents [4,5], 
Kolmogorov [6], approximate [7], sample [8] and permutation [9]
entropies, fractal [10] and multifractal [11] measures, and statis-
tical complexity [12]. Moreover, combinations of these measures 
have been also proposed especially for discriminating and classify-
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ing dynamical systems. The usefulness of these multidimensional 
schemes has been confirmed for heterogeneous goals such as the 
distinction between noise and chaos [13,14], the characterization 
of a language corpus [15], the quantification of financial market ef-
ficiency [16,17], the automatic detection of epileptic seizure from 
electroencephalograms [18], the discrimination of songs in mas-
sive databases [19], and the classification of cardiac signals [10,
20,21] and texture images [22], pointing out only a few of many 
applications. Despite the existing contributions, characterizing the 
underlying dynamics of complex system from time series is still a 
challenging problem of current research.

Tarnopolski has very recently introduced a representation space 
by plotting two statistical features associated with time series: the 
Abbe value and the number of turning points [23]. Numerical re-
alizations of stationary and non-stationary long-range dependence 
stochastic processes are successfully discriminated in this plane. 
More precisely, fractional Brownian motion (fBm), fractional Gaus-
sian noise (fGn), and differentiated fGn (dfGn) were found to form 
distinct branches in the proposed space. In this work, we go one 
step further by showing that this bidimensional scheme can be 
used as a discriminator of dynamics. Analysis of financial and 
physiological time series have been included for illustrating the 
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robustness of the technique when dealing with real time series. 
A multiscale generalization, inspired by the multiscale entropy al-
gorithm proposed by Costa et al. [24], is introduced for unveiling 
hidden information over different levels of temporal resolution of 
the original signal. The higher discriminative power at particular 
time scales observed in the physiological applications confirms the 
advantages of implementing the proposed multiscale analysis. As 
it will be shown below, our results demonstrate that the Abbe 
value and the number of turning points are two distinctive features 
for identifying differences in complex systems dynamics. Conse-
quently, the location in the representation space, that results from 
computing simultaneously both quantifiers, deserves special con-
sideration for time series classification purposes.

The remainder of this paper is structured as follows. In Sec-
tion 2, the Tarnopolski’s diagram together with the proposed mul-
tiscale recipe and a couple of benchmark tests are discussed. The 
performance of the method as a diagnostic tool is analyzed in Sec-
tion 3 through several real-world applications. Finally, in Section 4, 
the main results and conclusions of this work are summarized.

2. Methods

2.1. Tarnopolski plane

Giving a time series {xi}n
i=1, the Abbe value, denoted A in this 

paper, is defined as half of the ratio of the mean square successive 
difference to the variance,

A = n

2(n − 1)

∑n−1
i=1 (xi+1 − xi)

2

∑n
i=1(xi − x̄)2

(1)

with x̄ the mean of {xi} [25–27]. The Abbe statistic quantifies the 
smoothness of a time series: it is close to zero for time series 
displaying a high degree of smoothness while it tends to one for 
white noise [23]. According to our knowledge, very few works have 
implemented this measure for practical applications. Within these 
few exceptions, the Abbe value and another related measure, the 
excess Abbe value, have been successfully applied in stellar vari-
ability studies for identifying transients in large-scale surveys [28].

A turning point in a time series is observed when the mid-
dle value xi of a sequence of three consecutive observations is 
lower or higher than the other two values, xi−1 and xi+1, that sur-
round it [29]. Equal values, i.e. x j = xk for j �= k, are neglected. This 
assumption is justified whenever {xi}n

i=1 has a continuous distri-
bution. From an arbitrary time series the probability of finding a 
turning point, denoted by T , can be empirically estimated by its 
relative frequency. In particular, T is asymptotically equal to 2/3
for random time series. It is important to stress here that esti-
mating the turning points probability is equivalent to calculate the 
zero crossing rate (ZCR) of the differentiated time series. ZCR has 
been previously implemented for diverse applications, e.g. the de-
tection of voiced and unvoiced sounds in speech signals [9] and 
the automatic diagnosis of tonic-clonic epileptic seizures [30]. The 
probability of finding a turning point is also linked with ordinal 
patterns. Indeed, estimating T is equivalent to calculate the rela-
tive frequency of four of the six possible motifs when embedding 
dimension D = 3 is considered (please see permutation indices 2, 
3, 4 and 5 in Fig. 2a of Ref. [21]).

Tarnopolski introduced a model representation space by plot-
ting the fraction of turning points of a time series versus its as-
sociated Abbe value. This T vs A diagram is able to discriminate 
fBm, fGn and dfGn (please see Fig. 5 of Ref. [23]). Moreover, an 
invertible relationship is found between A and the Hurst expo-
nent H . This functional form has been then used for estimating 
the Hurst exponent of several real world data. Briefly, the Hurst 
exponent H is a scaling exponent that measures the long-range 

dependence in time series. Further details about H can be found 
in Refs. [31,32]. For illustrating the ability of the Tarnopolski plane 
to characterize long-range dependence in time series, we have an-
alyzed the location of generic 1/ f α noises in this bidimensional 
scheme. In Fig. 1 a), we depict the position of colored noises with 
α ranging from −1 to 3 in steps of size 0.1. Average and standard 
deviation (SD) (displayed as error bars) of estimated A and T val-
ues for one hundred independent realizations of length n = 214 for 
each α exponent have been plotted. The Fourier Filtering Method 
(FFM) has been implemented in Matlab for generating these long-
range power-law correlated time series. In the FFM, the Fourier 
components of an uncorrelated sequence of Gaussian-distributed 
random numbers are filtered with a suitable power-law filter in 
order to introduce correlations among the variables. We address 
the reader to Refs. [33,34] for more details about this algorithm. 
Some examples of these artificial long-range correlated time se-
ries are shown in Fig. 1 b). It can be concluded that colored noises 
with α between −1 and 1 are more noisy and better discrimi-
nated by the Abbe value. Whereas, when the power-law exponent 
is between 1 and 3, the fraction of turning points is more appro-
priate for distinguishing between them. We have also confirmed 
that a very similar evolution in the Tarnopolski plane is followed 
by longer 1/ f α artificial time series (n = 100,000). As expected, in 
this case, shorter SD error bars are obtained.

2.2. Multiscale analysis

It is widely recognized that time series arising from some rep-
resentative variable of nonlinear complex systems have a multi-
scale nature, i.e. the observed dynamics is often strongly depen-
dent on the resolution scale used to sample the signal. For il-
lustrating this multiscale phenomenon, we consider the analysis 
of time series derived from nonlinear dynamics in a numerically 
controlled situation. More precisely, we estimate A and T from 
realizations of the x-variable of the Lorenz system:

ẋ = σ(y − x), ẏ = x(ρ − z) − y, ż = xy − βz . (2)

Following the example included in Ref. [23], time series of 
length n = 214 data points were generated with initial conditions 
(x0, y0, z0) = (1, 5, 10), and standard parameters σ = 10, ρ = 28
and β = 8/3 for which the system exhibits chaotic behavior. The 
time series were numerically integrated by using the Matlab’s 
ode45 function, that implements fourth and fifth order Runge–
Kutta numerical integration algorithms, with an integration step 
equal to 0.001. Sampling periods δt ranging from 0.001 to 1 with a 
step equal to 0.001 are considered. We analyzed time series with 
n = 214 data points for each δt . The first 105 iterations were dis-
carded to avoid possible transients. The evolution of the location in 
the Tarnopolski plane of these one thousand numerical realizations 
of length n = 214 with different temporal resolutions is depicted in 
Fig. 2. It is worth remarking here that a very similar behavior is 
obtained by analyzing longer numerical realizations (n = 100,000). 
On the one hand, for low values of δt , an artificial regular behavior 
is spuriously observed due to oversampling and both quantifiers 
are near zero. This oversampling generates redundancy in the in-
formation contained in the signals. On the other hand, for high 
values of the sampling period, the signal appears to be stochas-
tic and fully uncorrelated. Essentially, relevant information about 
the nonlinear temporal correlations is lost due to undersampling, 
and the value of quantifiers are close to that expected for a white 
noise, i.e. A ≈ 1 and T ≈ 2/3. Through this toy example it is easily 
concluded that the estimated value for A and T , and consequently 
the location in the bidimensional scheme, is strongly dependent on 
the temporal resolution. These findings imply the need to explic-
itly include the time scale notion in the implemented measure to 
reach a more proper characterization.
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