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We present a mean-field fluctuating hydrodynamics (FHD) method for studying the structural and 
transport properties of ionic liquids in bulk and near electrified surfaces. The free energy of the system 
consists of two competing terms: (1) a Landau–Lifshitz functional that models the spontaneous separation 
of the ionic groups, and (2) the standard mean-field electrostatic interaction between the ions in the 
liquid. The numerical approach used to solve the resulting FHD-Poisson equations is very efficient 
and models thermal fluctuations with remarkable accuracy. Such density fluctuations are sufficiently 
strong to excite the experimentally observed spontaneous formation of liquid nano-domains. Statistical 
analysis of our simulations provides quantitative information about the properties of ionic liquids, such 
as the mixing quality, stability, and the size of the nano-domains. Our model, thus, can be adequately 
parameterized by directly comparing our prediction with experimental measurements and all-atom 
simulations. Conclusively, this work can serve as a practical mathematical tool for testing various theories 
and designing more efficient mixtures of ionic liquids.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In the past decade, extensive studies have been conducted on 
room temperature ionic liquids (RTIL) mainly because of their in-
triguing physical properties as compared to the traditional elec-
trolytes [1,2]. Their potential applications include high storage 
devices (super-capacitors) [3], batteries [4], lubrication of micro-
electromechanical machines [1], dye-sensitized photoelectrochem-
ical cells [5], and gating devices [2]. In a nutshell, RTIL can be 
considered as a new type of electrolyte due to their wide range of 
structural transitions near electrified surfaces [6,7]. Experimental 
studies and atomistic-level simulations have reported overscreened 
and crowded aggregations of ions near electrodes that are accom-
panied by lamellar, bicontinuous, and sponge-like layerings [8–12]. 
This structural morphology of RTIL can be tuned accordingly to 
increase the energy density and modify the transport properties 
of the electric double bilayer (EDL), i.e., the interface between the 
ionic liquid and a charged metallic surface [13].

Traditional mean-field studies for dilute electrolytes, such as the 
Gouy–Chapman–Stern (GCS) theory [14], predict the formation of 
an exponentially decaying charged layer near the metallic surface. 
Such behavior results in capacitance that is a monotonic function 
of the applied electric field. Recent experiments, however, have 
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revealed a voltage-driven anomalous differential capacitance re-
sulting from sudden changes in liquid morphology at the EDL [15]. 
This behavior has signatures of first-order phase transition and 
calls for theoretical studies beyond the traditional GCS approach. 
Modified mean-field models are capable of capturing screened and 
crowded interfacial effect that results in a non-monotonic volt-
age dependence of the capacitance [16,2,17]. However, they do not 
predict a first-order phase transition. Very recently, Limmer intro-
duced a novel mean-field model that describes the experimentally 
observed anomalous behavior of the capacitance [18]. He particu-
larly showed that this phenomenon results from the interplay of 
the short-range repulsion and long-range electrostatic interactions 
between the oppositely charged ionic groups. Using a Landau–
Lifshitz–Poisson model, Gavish and Yochelis proceeded one step 
further and studied the interplay between the bulk nano-domains 
and the periodic layering at EDL [19]. Lee and Perkin followed a 
substantially different approach and showed that ion–image inter-
action might explain the anomalous transition in the differential 
capacitance [20]. They also mentioned that this behavior depends 
on the bulk energy of the RTIL.

The above mentioned theoretical approaches have qualitatively
explained the mechanisms underlying the intriguing morphology 
of RTIL. However, these methods cannot provide quantitative re-
sults that could help design more efficient ionic liquids mixtures. 
The problem is simply too complicated to be solved analytically 
near electrified surfaces. Besides, deterministic numerical simula-
tions cannot provide reliable predictions since they do not probe 
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the entire free energy landscape of the system. To overcome this 
limitation, we present a stochastic mathematical model that di-
rectly compares with the experimental observations and all-atom 
molecular dynamics simulations. Our approach describes thermal 
noise through the standard FHD framework, which is a relatively 
well-developed method for modeling nanoscale fluid dynamics. Al-
though initially introduced in an attempt to describe thermal fluc-
tuations in homogeneous liquids [21], FHD has now become so-
phisticated enough to model mass, momentum, and energy trans-
fer [22–29] in multiphase–multicomponent fluid flows [30,31] with 
or without reactive species [32,33] for length scales as small scales 
as 5 Å [24]. FHD has also been incorporated in many popular 
fluid–structure methods to capture the effect of fluid thermal fluc-
tuations on nanostructure dynamics [34–39,24].

In this study, we present an FHD approach for ionic liquids 
designed to model not only the morphology but also the trans-
port properties of the mixture. For this purpose, the governing 
equations of the system include the mass, component, and mo-
mentum balance equations coupled with the Poisson equation that 
provides the electrostatic potential in the system. To describe the 
spontaneous component separation, we consider a Landau–Lifshitz 
free energy functional similar to the Ref. [19] but appropriately 
modified to accommodate thermal fluctuations. The spatial gra-
dients are approximated using the central difference staggered
scheme presented in Ref. [24], while the time integration of the 
governing equations is performed using a stochastic second order 
Runge–Kutta method [42]. The Poisson equation is solved simul-
taneously at each time step using a fast Fourier transform (FFT). 
Extensive numerical simulations proved that our approach can ac-
curately reproduce the statistical fluctuations of the density fields 
and describe the experimentally observed nanostructuring in the 
bulk and near the EDL. We also show that the presence of ther-
mal fluctuations may lead the system to ground states that are 
substantially different compared to the steady states of determin-
istic simulations of ionic liquids. Our approach, thus, can provide 
a quantitative analysis of RTIL and be a numerical framework for 
testing various theories and designing more efficient ionic liquids 
mixtures at the nanoscale.

The structure of the paper is as follows. In Sec. 2, we introduce 
the FHD equations for ionic liquids, and in Sec. 3, we present the 
numerical scheme used to solve the stochastic partial differential 
equations. In Sec. 4, we present the results of our numerical sim-
ulations. Specifically, Sec. 4.1 is devoted to the dynamics of RTIL 
in the absence of an external electrostatic field. We first validate 
the accuracy of our numerical approach and then statistically ana-
lyze the fluctuations of the order parameters. In Sec. 4.2, we model 
an ionic liquid nanoconfined between two oppositely charged elec-
trodes (nano-capacitor) and discuss the ability of our approach to 
reproduce the intriguing morphology of ionic liquids. Differences 
between stochastic and deterministic modeling of ionic liquids are 
also discussed. Finally, in Sec. 5, we briefly summarize and discuss 
our results.

2. FHD equations for ionic liquids

We have assumed a symmetric ionic liquid that consists of 
monovalent anions and cations of charge per unit mass z+ = z0
and z− = −z0, respectively, where z0 ∈ R

+ . If ρ+ and ρ− represent
the mass density of the two opposite ions, we can define the total 
mass density of the system as ρ = ρ+ + ρ− and the mass fraction 
difference as c = c+ − c− , where c+ = ρ+/ρ and c− = ρ−/ρ . The 
total charge per mass unit is given by z = z0ρc. If the electrostatic 
potential of the system is denoted by φ, and x ∈ R

3 represents the 
spatial coordinates, the total mean field energy of the system can 
be written as 

F = F0[c(x),ρ(x)] + Fe[c(x),ρ(x),φ(x)]. (1)

The first term in Eq. (1) represents the free energy of the sys-
tem in the absence of electrostatic interaction and is given by a 
Ginzburg–Landau functional 

F0[c(x),ρ(x)] =
∫ (

ψc(c) + kc

2
|∇c|2 + ψρ(ρ) + kρ

2
|∇ρ|2)

)
dx,

(2)

where ψρ and ψc are the local free energy densities for the order 
parameters and ρ and c, respectively. Both local terms have a dou-
ble well structure, i.e., ψρ(ρ) = A(ρ − ρl)

2(ρ + ρv)2, with minima 
at ρl (liquid) and ρv (vapor), and ψc(c) = B(c − 1)2(c + 1)2/2 with 
two minima at −1 (cations) and +1 (anions). The coefficients A
and B are a measure of the barrier heights. The mass density and 
mass fraction square gradients represent the free energy penalty 
for having phase and component interfaces, respectively, where kρ

and kc are the corresponding gradient coefficients.
The second term in Eq. (1) is the electrostatic energy of the 

system 

Fe[c(x),ρ(x),φ(x)] =
∫ (

z0ρcφ − 1

2
ε|∇φ|2

)
dx, (3)

where ε is the permittivity.
Under these assumptions, the mass, momentum and compo-

nent balance equations are written as follows:

∂ρ

∂t
= −∇ · g, (4)

∂g

∂t
= ∇ · (R + � + �̃), (5)

∂(ρc)

∂t
+ ∇ · (ρcυ) = −∇ · (J + J̃), (6)

∇2φ = zρc

ε
, (7)

where t ∈ R
+ , g = ρυ is the momentum density, and υυυ the ve-

locity field of the fluid. The three tensors, R, � and �̃, in the 
momentum balance equation (Eq. (5)), are the reversible, viscous, 
and fluctuating stress, respectively. Deriving the momentum bal-
ance equation through the least action principle shows that ∇ ·R =
−ρ∇(δF/δρ)c + (δF/δc)ρ∇c, which leads to 

∇ · R = ∇ · Rρ + ∇ · Rc − z0ρc∇φ, (8)

where 

Rρ =
[
−p0 − kρρ∇2ρ + kρ |∇ρ|2

2

]
I − kρ∇ρ ⊗ ∇ρ (9)

and 

Rc =
[
ψc(c) + kc

2
|∇c|2

]
I − kc∇c ⊗ ∇c (10)

are the reversible stress tensors for the order parameters ρ and c, 
respectively. In this work, we have assumed that there is no 
liquid–vapor phase separation and have neglected the mass den-
sity gradient. In Eq. (9), p0 is the thermodynamics pressure, i.e., 
p0 = ρ∂ψρ/∂ρ − ψρ [30]. For simplicity, we have assumed that 
Rρ is the hydrodynamic pressure of the system 

Rρ � c2
T ρI, (11)

where cT is the sound velocity of the mixture. We also have as-
sumed that the velocity fluctuations are small enough to neglected 
the nonlinear advection term in Eq. (5). The Newtonian dissipative 
stress in momentum balance equation is expressed as 
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