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In this paper, the scattering behaviour of an electromagnetic wave by vortex flow is studied in detail by 
solving the first-order (in v/c) Maxwell’s equation in the cylindrical coordinate system (r, ϕ, z) and 
the general solutions are obtained. From these solutions, the differential cross-section of the vortex 
flow is calculated and the electromagnetic scattering characteristics of the vortex flow are discussed. 
The dependence of differential cross-section on the velocity profile and the radius of the vortex flow is 
investigated independently. Besides, by considering the dependence of scattering characteristics on the 
frequency of an incident wave we conclude that the vortex flow has frequency selectivity.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The electrodynamics in moving media has made significant 
progress since the birth of Maxwell’s equations and Minkowski’s 
constitutive relations, and these relationships are very useful in 
explaining the electromagnetic phenomena related to the mov-
ing media. Extensive research on the propagation and scattering 
of electromagnetic waves in the moving media has been carried 
out and several important findings have been reported such as the 
frequency shift of a reflected wave by a moving mirror [1,2], the 
Aharonov–Bohm effect [3] for light by moving media, the genera-
tion of negative refraction [4] by moving media, and the magneto-
electric effect of a moving medium [5]. More recently, a new the-
ory to achieve birefringence in the time-dependent moving media 
has been given [7,8]. Such findings rise interest in the electrody-
namics theory of the moving media and lead physicists to discuss 
more interesting situations, one of these is the rotating medium, 
specifically the case of a rotating cylinder. The scattering problem 
of static cylinder is well established and the analytical solutions 
are given in many textbooks on the electromagnetic scattering the-
ory, however, the problem becomes complex if the cylinder is ro-
tating. In such a case when the cylinder is rotating very fast, the ef-
fects of velocity cannot be ignored. Some authors have studied the 
scattering problem of rotating bodies [9–13], besides, the solutions 
for a rotating dielectric cylinder with a certain circular mechanical 
frequency are also given [14,16,40]. Although the electrodynamics 
of rotating systems has been much discussed, it has a long tra-
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dition in providing controversy. Gerald and coauthors questioned 
the rationality of the theoretical description of Wilson–Wilson ex-
periment which applied the theoretical result of translational me-
dia to rotating media [31]. Since then, several articles have been 
reported which discussed the Wilson–Wilson experiment and pre-
sented the analytical solutions that describe the electrodynamics of 
rotating media [32–37]. The Abraham–Minkowski debate also pro-
vides numbers of articles about the rotating media [38–42]. Most 
of the references given herein discuss the electromagnetic field in 
a rotating medium, however, we are interested in to observe the 
influence of a rotating medium on the scattering field outside the 
rotating medium. It will be helpful in acquiring useful information 
of an unknown vortex through its scattering characteristics.

In this paper, a relatively complex model of a rotating dielec-
tric cylinder is studied. The scattering problem of an infinitely long 
dielectric vortex flow with the velocity profile v = �/rêϕ [15] is 
discussed where the velocity profile of the vortex flow satisfies Eu-
ler’s equation for an ideal incompressible fluid i.e., dv/v +dr/r = 0. 
Besides, the velocity field is divergence and curl free i.e., ∇ · v = 0
and ∇ × v = 0. The electrodynamics of such a moving medium has 
been studied by many authors and many important findings have 
been reported. D. Censor has discussed the first-order propagation 
in the waveguide filled with the vortex flow [17], U. Leonhardt 
has studied the Aharonov–Bohm effect for light [6], and the op-
tical black hole effect near the vortex core for the vortex flow 
has also been reported [18]. The scattering of an electromagnetic 
wave by vortex flow in a rotating dielectric medium has not been 
studied before, therefore, we discuss such a scattering behaviour 
in detail in our work. We have derived the essential equations 
for an electromagnetic field that satisfies vortex flow and further, 
discussed the general solutions. We have also studied the scatter-
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ing characteristics of the vortex flow and deduced very interesting 
conclusions.

The paper is organized as follows. In Section 2, the electromag-
netic field equations for the vortex flow are derived by using the 
Maxwell’s equations. The general solutions of these equations are 
given in Section 3. In Section 4, the scattering problem for the vor-
tex flow is discussed. The scattering characteristics of the vortex 
flow are discussed in detail in the Section 5 and the last Section 6
concludes our work.

2. Essential equations

We start with the well known Maxwell’s equations which for a 
source free medium can be written as

∇ · D = 0, ∇ × E = −∂B

∂ t
,

∇ · B = 0, ∇ × H = ∂D

∂ t
.

(1)

The constitutive relations between these fields for a moving 
medium in the laboratory system can be approximated by
Minkowski’s relations of the first-order (in v/c) [19] when we have 
v < c. Therefore, we can write

D = εE +
(

n2 − 1

c2

)
v × H,

B = μH −
(

n2 − 1

c2

)
v × E,

(2)

where ε and μ denote the permittivity and the permeability of 
the medium respectively. In our case, both the permittivity and 
permeability of the medium are considered as constants. In the 
same set of equations given earlier, n is the refractive index of the 
medium, v is the velocity of the vortex flow, and c is the speed of 
light in vacuum.

To find the solutions for a monochromatic electromagnetic 
wave, we assume the field in harmonic form, and write

E (r, t) = E (r)exp (iωt),

H (r, t) = H (r)exp (iωt).
(3)

Further solving Eqs. (2) and (3), and then substituting the result 
into the curl equations given in Eq. (1), we arrive at the two equa-
tions. The resulting equations are given by

∇ × E = −iωμH + iω

(
n2 − 1

c2

)
v × E,

∇ × H = iωεE + iω

(
n2 − 1

c2

)
v × H.

(4)

For the divergence relations in the Maxwell’s equations, it’s easy 
to prove that for the electromagnetic field of harmonic form like 
Eq. (3), the curl relations in the Maxwell’s equations satisfy the 
divergence relations. In fact, the divergence relations act just like 
initial conditions, once the initial values of the divergences are 
given, the values of any other moment will remain the same.

Next, we consider the vortex flow in an incompressible liquid 
with velocity represented in the cylindrical coordinate system as

v = �

r
êϕ, (5)

where the parameter � is a constant independent of the coordi-
nates with dimension [L2T−1]. It is obvious that the velocity is 
centrosymmetric about the z-axis, therefore, the scattering prob-
lem can be simplified to a two-dimensional problem if the direc-
tion of the incident wave is perpendicular to the symmetry axis.

Now, consider a case when the spatial part of the electromag-
netic field depends only on r and ϕ . By expanding the set of Eq. (4)
using the cylindrical coordinates (r, ϕ , z) and further using Eq. (5)
into it, the set of Eq. (4) transforms to

êr : Hr = 1

iωμ

(
iα

r
Ez − 1

r

∂ Ez

∂ϕ

)
, (6)

êϕ : Hϕ = 1

iωμ

∂ Ez

∂ r
, (7)

êz : ∂ Eϕ

∂ r
+ Eϕ

r
− 1

r

∂ Er

∂ϕ
= − iα

r
Er − iωμHz, (8)

and

êr : Er = 1

iωε

(
− iα

r
Hz + 1

r

∂ Hz

∂ϕ

)
, (9)

êϕ : Eϕ = − 1

iωε

∂ Hz

∂ r
, (10)

êz : ∂ Hϕ

∂ r
+ Hϕ

r
− 1

r

∂ Hr

∂ϕ
= − iα

r
Hr + iωεEz. (11)

In the equations given above, α = n2−1
c2 ω� is a dimensionless 

quantity and obviously for α = 0, i.e., v = 0, these equations re-
duce back to the usual case when there is no vortex flow. It is 
evident from Eqs. (6) and (7) that if the electric field component 
Ez is known, it is easy to determine the magnetic field components 
Hr and Hϕ . Similarly, from Eqs. (9) and (10), it is clear that if the 
magnetic field component Hz is known, the electric field compo-
nents Er and Eϕ can be determined. Thus, we only need to find 
the equations that satisfy Ez and Hz .

On substituting Eqs. (6)–(7) and Eqs. (9)–(10) into Eqs. (11) and 
(8) respectively, we arrive at the second order differential equa-
tions

∂2 Ez

∂ r2
+ 1

r

∂ Ez

∂ r
+ 1

r2

∂2 Ez

∂ϕ2
− 2iα

r2

∂ Ez

∂ϕ
+

(
k2 − α2

r2

)
Ez = 0, (12)

and

∂2 Hz

∂ r2
+ 1

r

∂ Hz

∂ r
+ 1

r2

∂2 Hz

∂ϕ2
− 2iα

r2

∂ Hz

∂ϕ
+

(
k2 − α2

r2

)
Hz =0, (13)

where k = √
μεω is the wave number in static medium. We notice 

from Eq. (12) and Eq. (13) that the field components Ez and Hz

satisfy the same differential equation which implies that if one of 
the two equations is solved, the other is also known by the same 
method.

By comparing Eq. (12) with the usual Helmholtz equation in 
the cylindrical coordinates, we observe two new terms, the first or-
der derivative term (− 2iα

r2
∂ Ez
∂ϕ ) and the zero order derivative term 

(−α2

r2 Ez), both are vortex dependent. If we set α = 0, the Eq. (12)
reduces back to the well known Helmholtz equation. In the next 
section, we discuss the analytical solutions for the field compo-
nent Ez by using the variable separation method.

3. General solution with variable separation

We use the separation of variables method to solve the prior 
given Eq. (12). In doing so, the product form for the field compo-
nent Ez can be written as

Ez (r,ϕ) = R (r)�(ϕ) . (14)

By substituting Eq. (14) into Eq. (12) and then multiplying the re-
sulting equation with r2/R�, we arrive at

r2

R

∂2 R

∂ r2
+ r

R

∂ R

∂ r
+ k2r2 + 1

�

∂2�

∂ϕ2
− 2iα

�

∂�

∂ϕ
− α2 = 0. (15)
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