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Gossip algorithms is a common term to describe protocols for unreliable information dissemination 
in natural networks, which are not optimally designed for efficient communication between network 
entities. We consider application of gossip algorithms to quantum networks and show that any quantum 
network can be updated to optimal configuration with local operations and classical communication. 
This allows to speed-up – in the best case exponentially – the quantum information dissemination. 
Irrespective of the initial configuration of the quantum network, the update requiters at most polynomial 
number of local operations and classical communication.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Real-world networks are complex: natural social and brain net-
works as well as artificial technological and computer networks 
exhibit non-trivial structural features, which make complete simu-
lation of the network dynamics practically impossible [1]. Complex 
non-stationary structure of modern artificial networks becomes a 
serious obstacle in the design of optimal protocols for informa-
tion dissemination in such networks. Inspired by a natural way of 
rumor spreading in social networks, gossip algorithms [2] give a 
simple strategy for distributed and robust information dissemina-
tion in a network of unknown structure. These algorithms have 
found prominent applications in sensor, peer-to-peer and social 
networks.

Quantum networks [3] will be the next generation of com-
plex structures for communication and advanced information pro-
cessing [4]. Due to quantum superposition and nonlocality [5], 
quantum networks exhibit a number of structural and dynamical 
features that classical networks lack. Among those are teleporta-
tion [6], quantum walks [7] and entanglement percolation [8,9] to 
name just a few. Recently we showed that with local operations 
and classical communication (LOCC) [5] one may change connec-
tivity of a given quantum network and simulate complex entan-
glement graphs on a simple underlying quantum network [10]. 
The structural modifications may radically improve the network 
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capacity for information dissemination and performance of corre-
sponding protocols, such as gossip algorithms.

In this paper we consider the problem of optimal information 
dissemination in quantum networks and analyze performance of 
gossip algorithms on the networks. As intuition suggests, the net-
work where any pair of vertices is connected with an edge offers 
the most favorable conditions for information dissemination. Such 
a network is represented with a complete graph. We show that any 
quantum network represented with a connected graph, i.e. where 
any two vertices can be connected with a path of edges, may 
be updated to the complete graph using just polynomial number 
of LOCC. The update allows to dissimilate information by means 
of quantum teleportation [5], thus radically improving the perfor-
mance of the gossip algorithms on quantum networks.

This work is structured as follows. In the next section, we 
briefly describe classical gossip algorithms for single- and multi-
piece information dissemination and introduce the quantities of 
interest, such as conductance, k-conductance and ε-dissemination 
time. For a more detailed and mathematically rigorous treatment 
we suggest an excellent review by Shah [2]. In Section 3, we show 
how to improve the performance of gossip algorithms on quantum 
networks by LOCC. For sparse quantum networks the improvement 
in the information dissemination time due to the update is ex-
ponential, but still requires only polynomial number of LOCC. We 
conclude in Section 4.

2. Classical gossip algorithms

From the structural viewpoint a network is a graph G = (V , E)

defined by sets of its vertices V and edges E . The set V = {1, ..., n}
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consists of a finite countable number of n vertices. The edges rep-
resent connections between the vertices E ⊂ V × V . The graph is 
called undirected if for any (i, j) ⊂ E , ( j, i) ⊂ E is also true. Here 
we impose no constrains on the direction of information dissimi-
lation, hence consider only undirected graphs.

Information dissimilation on a graph may be studied with a dis-
crete random walk technique, which requires definition of a n × n
non-negative valued probability transition matrix P = [Pij], where 
Pij is the probability of information dissemination from vertex 
i to j. Through the transition matrix, we may define an auxil-
iary function named conductance �(P ), which characterizes the 
information dissemination capacity of a graph of particular config-
uration of vertices and edges. For symmetric P – which is the case 
for undirected graphs – the conductance is defined as [2]

�(P ) = min
S⊂V :|S|≤n/2

∑
i⊂S, j⊂Sc P i j

|S| , (1)

where S is the set of nodes that possesses the information, while 
Sc is the set of those that doesn’t. Here, the minimum is to be 
found over the set S taking into account its symmetry. Hence, 
Eq. (1) is a proper definition of conductance for an undirected 
graph only [2]. The conductance is completely defined by the tran-
sition matrix of a graph, thus tells us how easy the information 
can be conducted through the graph. Also, the conductance is in-
dependent on a particular information dissemination protocol to 
be implemented on the graph.

A related to the conductance auxiliary function is k-conduc-
tance, which minimizes (1) for k ≤ n/2, i.e.

�k(P ) = min
S⊂V :|S|≤k

∑
i⊂S, j⊂Sc P i j

|S| . (2)

Using the k-conductance, we may also define the mean conduc-
tance �̂(P ) as

�̂(P ) =
n−1∑
k=1

k

�k(P )
. (3)

In the following we will focus on two particular graphs: the 
complete graph, where each pair of nodes is connected with an 
edge, and the ring graph, where nodes are placed on a circle 
with edges between nearest neighbors only. These two graphs are 
chosen for comparison because of their radical difference in the 
capacity for information dissemination. With the probability ma-
trix Pij = 1/n for all i and j, the complete graph has the best 
possible capacity to disseminate information, i.e. �(P ) = O (1)

and �̂(P ) = O (n2 logn), where O (..) is the standard notation for 
asymptotic upper bound. The ring graph with the probability ma-
trix Pii = 1/2 and Pij = 1/4 for i �= j, in contrast, has the strongest 
constrain for information dissemination leading to �(P ) = O (1/n)

and �̂(P ) = O (n3).
Analyzing gossip algorithms we will be interested in the value 

called ε-dissemination time T (ε). This value gives us time by 
which all nodes have the information with probability at least 
1 − ε. The definition of the ε-dissemination time depends on the 
algorithm, thus will be given in the next sections for single- and 
multi-piece dissemination strategies separately. Our goal is to esti-
mate the ε-dissemination time through the conductance, allowing 
general treatment of the algorithm efficiency for any graph struc-
ture.

2.1. Single-piece dissemination

Let an arbitrary vertex υ ∈ V have a piece of information that 
it wishes to spread to all the other vertices as quickly as possible. 
Let S(t) ⊂ V denote the set of vertices that have the information 

at time t , which is also assumed to be discrete. At each time step, 
each vertex i contacts at most one of its neighbors j with proba-
bility Pij . If either i or j has the information at t − 1, then both 
vertices have it at time t .

For the single-piece dissemination algorithm, the ε-dissemi-
nation time is defined as

T1(ε) = sup
υ∈V

inf{t : Pr (S(t) �= V |S(0) = υ) ≤ ε}. (4)

The right hand side of this definition accounts for the maximal 
time at which the set S(t) is inequivalent to V with probability no 
greater then ε, assuming that initially the set S(t = 0) consisted of 
a single vertex υ .

The ε-dissemination time for the single-piece dissemination al-
gorithm may be expressed through the conductance (1) as [2]

T1(ε) = O

(
log n + logε−1

�(P )

)
. (5)

This expression tells us explicitly how the ε-dissemination time 
depends on the structure of underlying network, i.e. on its conduc-
tance. For the complete graph the ε-dissemination time is given by 
T c

1(ε) = O (log n), which is the upper bound for single-piece dis-
semination algorithm performance in any network. For the ring 
graph the ε-dissemination time is exponentially larger compar-
ing to the previous case, i.e. T r

1(ε) = O (n log n). It is important to 
note that information dissemination on a ring can be performed 
as fast as O (n) by setting a simple intuitive rule, for example, 
‘always send information to the left neighbor’. But, gossip algo-
rithms have no account for network structure, which is the key 
for their universality. Moreover, the gossip algorithms on a ring 
are just logarithmically slower then the intuitive strategy, which is 
practical.

2.2. Multi-piece dissemination

In contrast to single-piece dissemination algorithm, where just 
a single vertex has the information initially, in multi-piece dissem-
ination each vertex wants to spread its own information to all the 
other vertices as quickly as possible. Let M = {m1, ..., mn} denote
the set of messages at time t = 0. As before each vertex contacts 
at most one of its neighbors at each time step. During the con-
tact, the vertices exchange all information they don’t have. The 
ε-dissemination time is defined as

T M(ε) =

inf{t : Pr

(
n⋃

i=1

Si(t) �= M|Si(0) = mi

)
≤ ε} , (6)

i.e. the maximal time at which the information at each vertex is in-
equivalent to the initial set M with probability no greater then ε. 
The ε-dissemination time is expressed through the mean conduc-
tance (3) as [2]

T M(ε) = O

(
�̂(P ) logε−1

n

)
. (7)

For the complete graph the ε-dissemination time is given by 
T c

M(ε) = O (n log2 n), which is the upper bound for multi-piece 
dissemination algorithm performance in any network. For the 
ring graph, in contrast, the ε-dissemination time is exponentially 
smaller, i.e. T r

M(ε) = O (n2 log n).

3. Gossip algorithms in quantum networks

Eqs. (5) and (7) unambiguously define performance of gossip 
algorithms through conductance (1) and it’s mean (3) for any clas-
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