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The paper considers heat transport in diatomic one-dimensional lattices, containing equal amounts of 
particles with different masses. Ordering of the particles in the chain is governed by single correlation 
parameter – the probability for two neighboring particles to have the same mass. As this parameter grows 
from zero to unity, the structure of the chain varies from regular staggering chain to completely random 
configuration, and then – to very long clusters of particles with equal masses. Therefore, this correlation 
parameter allows a control of typical cluster size in the chain. In order to explore different regimes 
of the heat transport, two interatomic potentials are considered. The first one is an infinite potential 
wall, corresponding to instantaneous elastic collisions between the neighboring particles. In homogeneous 
chains such interaction leads to an anomalous heat transport. The other one is classical Lennard–Jones 
interatomic potential, which leads to a normal heat transport. The simulations demonstrate that the 
correlated disorder of the particle arrangement does not change the convergence properties of the heat 
conduction coefficient, but essentially modifies its value. For the collision potential, one observes essential 
growth of the coefficient for fixed chain length as the limit of large homogeneous clusters is approached. 
The thermal transport in these models remains superdiffusive. In the Lennard–Jones chain the effect of 
correlation appears to be not monotonous in the limit of low temperatures. This behavior stems from the 
competition between formation of long clusters mentioned above, and Anderson localization close to the 
staggering ordered state.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Heat conductivity in one-dimensional (1D) lattices is a well-
known classical problem related to the microscopic foundation of 
Fourier’s law. The problem started from the famous work of Fermi, 
Pasta, and Ulam (FPU) [1], where an abnormal process of heat 
transfer was initially revealed. Numerous aspects of the problem 
were widely addressed over last two decades [2–4]. It was estab-
lished that mere nonlinearity of the interparticle interactions in 
one-dimensional models is insufficient for convergence of the heat 
conduction coefficient in the thermodynamical limit. Recently it 
was demonstrated that the heat conductivity converges in broad 
variety of models with bounded potential of the interatomic in-
teraction [5,6]. Such models are characterized by possibility of 
dissociation between the neighboring particles. This conclusion on 
convergence, however, does not apply to “billiard” models, where 
interaction between the particles is reduced to instantaneous elas-
tic impacts. It seems that the reason for this crucial difference is 
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the nonzero time of interaction between the neighboring parti-
cles, when the potential is not ideally “impact”. Thus, triple particle 
collisions are possible; the latter provide additional efficient scat-
tering mechanism, as outlined in [6].

In this paper we address other system properties, which di-
rectly effect the heat transport – a homogeneity and an ordering 
in the lattice. Modifications of the heat transport caused by inho-
mogeneities in the mass or potential distribution were explored 
starting from the pioneering work on harmonic system with dif-
ferent masses [7]. Later works considered isotopic disorder [8], 
harmonic [9] and anharmonic random chains [10,11]. However, 
main attention of the studies on the nonhomogeneous systems 
has been attributed to chains with staggering [12,13] or randomly 
distributed masses. In particular, numerous papers simulated the 
heat transport in one-dimensional diatomic hard-point gas. This 
system is especially interesting, since the case of equal masses 
corresponds to completely integrable linear homogeneous billiard 
(even its version with external on-site potential is integrable, see, 
e.g. [14]). So, the staggering masses constitute a perturbation of 
the integrable case, and the question is whether this perturbation 
will lead to normal heat transport. Numerous numeric works on 
the diatomic billiard with staggering particles led to a conclusion 
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that the heat conduction coefficient κ in this system diverges in 
the thermodynamical limit as κ ∼ Nα for certain α > 0 [15–18]. 
More detailed recent exploration of this system [19] demonstrated, 
that when the mass ratio is slightly different from one, it is not 
possible to exclude normal heat conduction over longer and longer 
sizes as the integrable limit is approached. In the same time, it 
was conjectured [19] that also in this case the heat conductiv-
ity diverges, but for longer chains than are available for simula-
tion.

An interesting idea for simulating the finite conductivity was 
to introduce scatterers in quasi-1D billiard gas channels. The first 
work in this field was carried out by Alonzo et al. [20], where a 
quasi-1D billiard in Lorentz gas channel was analyzed. The ends 
of the channel constituted the heat baths, and the movement of 
the particles inside the channel was interrupted by semicircular 
scatterers. The conductivity of this chaotic system obeyed Fouri-
er’s law. In order to investigate the role of chaos on the problem 
of heat conduction, the subsequent works implemented changes in 
geometry and order of the scatterers [21]. Some of the “modified” 
configurations showed normal heat conductivity. In some others, 
the heat conduction coefficient diverged [21]. Thus the assump-
tion that chaos may be sufficient condition for a system to possess 
the finite heat conductivity has been disproved. Such billiard gas 
models might shed some light on the heat transport. In the same 
time, they lack certain basic features of the realistic systems, such 
as particle interactions, phonon transport, and local thermal equi-
librium [21].

In this paper we also consider the thermal transport in the 
chain models, which include the particles with two different 
masses, but do that in more general setting. Key difference from 
the previous studies is that the ordering of these particles in 
the chains is neither perfectly periodic (homogeneous or stagger-
ing) nor completely random. Instead, the mass distribution in the 
chain is characterized by the correlated disorder. More exactly, the 
masses of neighboring particles are equal with probability pm , and 
0 ≤ pm ≤ 1. Increase of this parameter favors clustering in the 
chain. All previously studied cases (complete order and uncorre-
lated disorder) correspond to special values of pm . The effect of the 
correlated disorder is studied for the system of rigid particles with 
abnormal heat conductivity, and also for a model with convergent 
heat conductivity – Lennard–Jones (LJ) chain. It is demonstrated 
that in any of these systems the correlated disorder does not mod-
ify the convergence properties of the heat conduction coefficient 
in the thermodynamical limit, but strongly effected the quantita-
tive characteristics of the heat transport.

2. Diatomic gas of rigid particles with random mass distribution

Let us consider the one-dimensional chain of rigid rods with 
size d > 0, with masses which can take only two values M1 = 1
and M2 = m ≥ 1 (dimensionless parameter m is interpreted as 
the mass ratio). To be specific, we choose the length of the rods 
as d = 0.1 and average distance between their centers a = 1. In 
other terms, numeric density of the rods is adopted to be unit. 
The rods are numbered in ascending order of coordinates of their 
centers. Hamiltonian of the system is expressed in the following 
form:

H =
∑

n

[
p2

n

2mn
+ V (xn+1 − xn)

]
. (1)

Here mn is a mass of the n-th rod, xn – coordinate of its center, 
pn = mnẋn . The interaction of absolutely rigid particles is described 
by the following hard-core potential:

V (r) = ∞ if r ≤ d, V (r) = 0 if r > d. (2)

Potential function (2) describes instantaneous elastic collisions of 
the rods. In this one-dimensional chain, only neighboring rods can 
collide, and collision of the rod number n with the rod number 
n + 1 occurs if the distance between their centers xn+1 − xn = d. As 
it is well-known, if before the collision velocities of the rods are 
vn = ẋn and vn+1 = ẋn+1, then after the collision the velocities will 
take the following values:

v ′
n = [2mn+1 vn+1 + (mn − mn+1)vn]/(mn + mn+1)

v ′
n+1 = [2mn vn + (mn+1 − mn)vn+1]/(mn + mn+1).

Between the collisions, the rods move as free particles.
In considered model, each rod can have the mass mn = 1 or the 

mass mn = m with equal concentration. To describe the correla-
tion between the masses of neighboring rods, we define additional 
parameter 0 ≤ pm ≤ 1, which denotes a probability for the neigh-
boring rod to have the same mass. The case pm = 0 corresponds to 
the chain with alternating masses, the case pm = 0.5 corresponds 
to completely random distribution of the masses in the chain (lack 
of correlation between the neighbors). The higher value of pm , the 
longer clusters of particles with equal masses are expected in the 
chain. Average length of such homogeneous clusters is estimated 
as Np ∼ 1/(1 − pm). In the limit pm −→ 1 the chain becomes al-
most homogeneous, in other terms, it contains the homogeneous 
clusters of diverging length Np −→ ∞.

For simulation of the heat transport in this model with N rods, 
we include the interaction of terminal rods with boundary ther-
mostats. The rod with n = 1 interacts with thermostat of temper-
ature T+ , the rod number N – with thermostat of temperature 
T− . Interaction of the first rod with the thermostat occurs when 
x1 = d/2. In this moment, the velocity of this rod is re-ascribed to 
v1 > 0; the latter is random with Maxwell distribution

P (v) = (|v|m/T )exp(−v2m/2T )

with mass m = m1 and temperature T = T+ . Similarly, the rod N
interacts with Maxwell thermostat when xN = N −d/2. In this mo-
ment, the velocity of this is re-ascribed to random value v N < 0
with Maxwell distribution with mass m = mN and temperature 
T = T− .

As it was mentioned above, the rods interact with the ther-
mostats only when they collide with the boundaries. In the mo-
ment of collision t = t j the thermostat changes the energy of 
the terminal rod by value �Ei(t j) = mi[v2

i (t j + 0) − v2
i (t j − 0)]/2, 

where i = 1, N . If over time interval [0, t] there were Nt colli-
sions of the terminal rod with the boundary in time instances 
({t j}Nt

j=1 ∈ [0, t]), then the average work done by the thermostat 
is expressed as

ji(t) = 1

t

Nt∑
j=1

�Ei(t j),

and its average power J i = limt→∞ ji(t).
For simulation of the heat transport in the system we choose 

the following initial conditions:

xn(0) = n − 1/2, ẋn(0) = vn, n = 1,2, ..., N.

Here vn is a random value with Maxwell distribution P (v) =√
mn/2π T exp[−mn v2/2T ], where T = (T+ + T−)/2.

Following paper [19], the temperature of the left boundary is 
set to T+ = 6, and of the right boundary – to T− = 4. Then, long 
time dynamics of the system is simulated. It should be mentioned 
that this dynamics does not depend on the absolute values of the 
temperatures, but only on the ratio T+/T− . After initial transient 
and formation of stationary heat flux, average powers of the ther-
mostats J1, J N are computed. The heat flux in the system should 
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