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Nonparaxial optical Bessel and Bessel–Gauss pincers optical-sheets are introduced based upon the angular 
spectrum decomposition in plane waves. The angular spectrum function and the beam-shape coefficients 
are expressed by means of improper integrals computed numerically. The radiated component of the 
electric field is also evaluated, displaying unique features of the nonparaxial Bessel pincers light-sheets. 
This new type of light-sheets finds potential applications in the development of novel methods in optical 
light-sheet tweezers for particle manipulation in opto-fluidics, particle sizing and imaging. Numerical 
predictions for the scattering, radiation force and torque, and particle dynamics also benefit from the 
developed beam solution.

© 2016 Elsevier B.V. All rights reserved.

Bending the wave field without modification and design of the 
medium of wave propagation is highly desirable in the develop-
ment of emergent technologies in optical surface wave tweezers 
and opto-fluidics applications. One particular example is the non-
paraxial Airy light-sheet [1] that has been recently introduced for 
potential applications in particle manipulation [2] and handling 
along curved trajectories [3]. Nonetheless, the Airy beam bending 
angle is relatively weak and there is a need to investigate improved 
solutions to further achieve larger bending angles, which can be 
very beneficial for imaging around steep corners, and in particle 
manipulation applications with minimal hampering by obstacles.

Along that direction of research, the present analysis suggests a 
novel nonparaxial beam solution, where the electric field has the 
shape of light-sheet pincers (i.e. slice of a beam in 2D) with tight 
bending arcs. This beam type is obtained by adequate apodization 
at the surface of the optical source using the cylindrical Bessel 
function of integer order m (in addition to the Gaussian func-
tion). It is of some importance to investigate novel solutions of 
beams yet to be explored from the standpoint of optical scatter-
ing, radiation force, torque and particle dynamics theories [4,5]
for optimal experimental design and the development of new av-
enues for applications in optical tweezers, particle manipulation 
and imaging. Notice that the standard 3D Bessel [6–9] and Bessel–
Gauss beams [10] possess limited-diffraction properties [11], with 
the self-healing ability [12,13] as they reform after encountering 
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an obstacle. The characteristics of the 2D solutions developed here 
differ from the 3D case such curving/bending arcs of maximal elec-
tric field magnitude can be synthesized. Moreover, their shapes 
can be controlled and bent to become quasi-circular depending 
on the light-sheet beam parameters, which may provide an ad-
vantage over the “abruptly autofocusing waves” [14] displaying a 
radial caustic collapse in the nonparaxial limit [15].

Consider a light-sheet beam in 2D propagating along the 
x′-direction with invariance with respect to the z′-axis (Fig. 1), 
with an electric field polarized along the z-direction (i.e. transverse 
electric TE-polarization such that E inc

x = E inc
y = H inc

z = 0). A time 
variation in the form of e−iωt is assumed but suppressed from the 
equations for convenience.

For the purpose of the present study, the initial beam profile 
describing the electric at the origin of the beam (x = 0) is chosen 
such that,

E inc
z (0, y) = E0 Jm(αky), (1)

where E0 is the electric field amplitude, Jm(.) is the cylindrical 
Bessel function of the first kind of integer order m, the parameter 
k is the wavenumber and α > 0 is a scaling (real) parameter.

Based on the angular spectrum decomposition in plane waves 
[16], the incident electric field component in space E inc

z is ex-
pressed in a system of Cartesian coordinate as,

E inc
z,m(x, y) =

+∞∫
−∞

Sm(p,q)eik(px+qy)dq, (2)
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Fig. 1. Graphical representation of the propagation of a nonparaxial optical pincers 
light-sheet, propagating along the x′-direction with invariance along the z′-axis.

where (p, q) are the directional cosines in polar coordinates such 
that p = cosχ , q = sinχ , and χ is the angle of propagation of 
the individual plane wave. Notice that Eq. (2) constitutes an exact 
solution of the Helmholtz and Maxwell’s equations. The function 
Sm(p, q) is known as the angular spectrum which characterizes the 
initial profile of the beam at the origin x = 0, and is obtained from 
the inverse Fourier transform,

Sm(p,q) =
{

( k
2π )

∫ +∞
−∞ E inc

z,m(0, y)e−ikqydy, if p2 + q2 = 1,

0, otherwise
(3)

Substituting Eq. (3) into Eq. (2) using Eq. (1), and manipulat-
ing the result, the incident electric field component (in Cartesian 
coordinates) becomes,

E inc
z,m(x, y) =

(
E0k

2π

) +∞∫
−∞

[ +∞∫
−∞

Jm
(
αky′)e−ikqy′

dy′
]

eik(px+qy)dq.

(4)

Since m is an integer number, the angular spectrum function 
can be further simplified [see Appendix A] such that,

Sm(p,q)

=
(

E0k

2π

)[ +∞∫
−∞

Jm
(
αky′)e−ikqy′

dy′
]

=
{

E0i−m

παm
√

α2−q2
�{(q + i

√
α2 − q2)m}, if |q| ≤ α,

0, otherwise.
(5)

In an arbitrary system of coordinates shifted from the center of 
the beam, the following transformations are used, such that,

x = (
x′ − x0

)
cos θi + (

y′ − y0
)

sin θi, (6)

y = −(
x′ − x0

)
sin θi + (

y′ − y0
)

cos θi, (7)

where x′ = r cos θ , y′ = r sin θ , and (r, θ ) are the polar coordi-
nates (Fig. 1). The parameters x0 = r0 cos θ0, y0 = r0 sin θ0, are 
the coordinates of the shift from the center of the beam where 
r0 =

√
x2

0 + y2
0, and θ0 = tan−1(y0/x0). The parameter θi denotes 

the angle of incidence with respect to the x-axis of wave propaga-
tion.

Using the Jacobi–Anger expansion [17], the incident electric 
field component given by Eq. (2) is rewritten as a multipole ex-
pansion series in cylindrical coordinates as,

E inc
z,m(r, θ) = E0

+∞∑
n=−∞

bn,m Jn(kr)einθ , (8)

where the bn,m are the beam-shape coefficients (BSCs) given by,

bn,m = ine−inθi

+∞∫
−∞

fm(p,q)dq, (9)

where,

fm(p,q) = Sm(p,q)e−i[n sin−1(q)+kr0 cos(sin−1(q)−θ0+θi)]. (10)

Notice that the BSCs given by Eq. (9) can be decomposed into 
the sum of two coefficients representing the radiated and evanes-
cent fields. Therefore, Eq. (9) becomes,

bn,m = brad
n,m + bev

n,m, (11)

where,

brad
n,m = ine−inθi

+1∫
−1

fm(p,q)dq, (12)

and

bev
n,m = ine−inθi

[ −1∫
−∞

fm(p,q)dq +
+∞∫

+1

fm(p,q)dq

]
. (13)

It is important to note that evanescent waves do not propagate 
to the far-field and their contribution to the total field is negligible 
[18–20] as they decay exponentially during propagation away from 
the source. Therefore, the integral bounds for the incident electric 
field given by Eq. (2) or Eq. (4) reduce to 

∫ +1
−1 (. . .)dq. For compu-

tations related to the optical scattering, radiation force and torque 
as well as particle dynamics [4], Eqs. (12) and (13) would be uti-
lized in the generalized theory for optical sheets [4,5], thus, their 
importance from that theoretical and analytical perspectives.

The numerical analysis is started by developing a MATLAB pro-
gram to compute the angular spectrum function [given by Eq. (3)] 
and the resulting radiated field [given by Eq. (4)], with particular 
emphasis on the scaling parameter α and beam order m. Stan-
dard numerical integration using the trapezoidal rule has been per-
formed with a sampling step as small as δq = 2 × 10−4 to achieve 
appropriate convergence.

Panels (a)–(c) of Fig. 2 display the numerical computations for 
the normalized magnitude of the incident electric field |E inc

z,m/E0|
in the dimensionless transverse plane (kx, ky) for α = 0.5 and 
beam topological charge m = 10, 45 and 100, respectively. It is in-
teresting to note the spatial region over which the incident field 
approaches zero (or in some instances vanishes). This area is de-
limited by large amplitude “bending arcs” of parabolic shapes from 
either side of the axis ky = 0 in the form of “pincers”. The bending 
arcs interfere and create a focal spot behind that region. The fo-
cal spot magnitude is maximal when m is an even integer number, 
but vanishes along the axis ky = 0 when m becomes an odd inte-
ger number. Thus, the Bessel pincers light-sheet possesses an axial 
null for odd integer orders. As the order of the beam m increases 
[i.e., panel (b)], the dimensions of the pincers and delimited re-
gion increase. As m increases further, the bending arcs no longer 
interfere as shown in panel (c), so that the focal spot magnitude 
fades out after it decreases while reaching a threshold determined 
by the values of α and m. For improved visualization of this ef-
fect, Visualization 1 shows the animation related to the variations 
of the topological charge of the beam for α = 0.5.



Download	English	Version:

https://daneshyari.com/en/article/5496890

Download	Persian	Version:

https://daneshyari.com/article/5496890

Daneshyari.com

https://daneshyari.com/en/article/5496890
https://daneshyari.com/article/5496890
https://daneshyari.com/

