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This work experimentally studies influences of the point defect modes on the group velocity of flexural 
waves in a phononic crystal Timoshenko beam. Using the transfer matrix method with a supercell 
technique, the band structures and the group velocities around the defect modes are theoretically 
obtained. Particularly, to demonstrate the existence of the localized defect modes inside the band gaps, 
a high-sensitivity fiber Bragg grating sensing system is set up and the displacement transmittance is 
measured. Slow propagation of flexural waves via defect coupling in the phononic crystal beam is then 
experimentally demonstrated with Hanning windowed tone burst excitations.

© 2016 Published by Elsevier B.V.

1. Introduction

Phononic crystals (PCs) have received considerable attention for 
their potential applications in various wave-manipulation devices. 
PCs are artificial structures consisting of alternating segments with 
large contrast in material or geometric properties [1]. Due to Bragg 
scattering or local resonance, PCs have frequency band gaps in 
which acoustic/elastic waves are strongly attenuated in a certain 
direction [2]. The existence of the band gaps in PCs is of interest 
to many researchers and has led to various practical applications 
such as vibration control, sound insulation, frequency filters, and 
so on [3–5].

In addition to the band gap phenomena, confinement of acous-
tic/elastic waves in localized modes is possible through the in-
troduction of crystal defects. A point defect acts as a microcavity 
which locally disturbs the crystal periodicity and generates the de-
fect modes to confine the acoustic/elastic waves inside the band 
gaps [6,7]. When line defects are created in a PC, waves are guided 
along the defects and thus they can be used as an efficient waveg-
uide. Despite the fact that various properties or devices have been 
proposed relating to the defect modes [6–10], less attention has 
been paid to PC beam structures in consideration of the defect 
modes and their associated flexural wave propagations.
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Band structures of flexural waves in a PC with a point defect 
can be theoretically studied using the plane wave expansion (PWE) 
method with a supercell technique [11,12]. PC plates with line 
defects have also been studied using the finite difference time do-
main (FDTD) method [13,14]. Recently, Hou et al. investigated the 
band structures of surface acoustic waves on nanostructured PCs 
with defects based on Brillouin light scattering and finite element 
simulations [15]. For sound waves in phononic crystals, Robertson 
et al. studied slow group velocity propagation of sound due to de-
fect coupling in an acoustic diameter-modulated waveguide [16]. 
For light in photonic crystals, the so-called slow light caused by 
the defect modes provides a way to achieve time delay for op-
tical systems [17]. However, the group velocity of flexural waves 
around the defect modes in PC beams is seldom theoretically or 
experimentally studied.

In this letter, propagations and transmission properties of the 
defect modes of flexural waves in a PC Timoshenko beam (here-
after simply referred as a PC beam) with a point defect are investi-
gated. We specifically focus on experimental demonstration of the 
existence of the defect modes inside the band gaps and their influ-
ences on the group velocity of flexural waves. Band structures are 
obtained using the transfer matrix method (TMM) with a supercell 
technique. In addition, the group velocity of the defect modes is 
calculated from the dispersion curves. Particularly, two point-wise 
fiber Bragg grating (FBG) sensors are set up to measure the dis-
placement transmittance at the two ends of the PC beam and to 
verify the existence of the defect modes. The FBG sensing system 
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Fig. 1. Schematic diagram of the supercell of the PC beam.

is also employed to measure transient flexural wave propagations 
excited by N-cycle tone bursts for calculations of the group ve-
locities. To the best of the authors’ knowledge, this is the first 
research in phononic crystals using a high-sensitivity point-wise 
FBG displacement sensing system. Due to its capability of perform-
ing simultaneous in-plane or out-of-plane point-wise displacement 
measurements, this research opens the possibility of employing the 
FBGs for experimental demonstrations of various phenomena (e.g., 
negative refraction, focusing, and so on) in periodic structures such 
as elastic phononic crystals or metamaterials.

2. Transfer matrix method with a supercell technique

A transfer matrix method (TMM) is an efficient analytical 
method very suitable for calculation of dispersive curves or trans-
mission properties of one-dimensional periodic structures such as 
rods or beams. In this section, the TMM with a supercell tech-
nique is adopted to analyze the defect modes in an infinite PC 
beam. A supercell is a large cell containing alternating unit cells 
with a defect in the center. Fig. 1 illustrates the nth supercell of 
the infinite PC beam. The supercell consists of 8 unit cells in which 
each unit cell is built of two segments with different elastic con-
stants and the crystal defect is introduced by varying the height of 
the middle segment (i.e., labeled as (3) in Fig. 1).

Before applying the TMM to the PC beam, the governing equa-
tion of the free bending vibration of a homogeneous Timoshenko 
beam segment with a constant cross-section is considered [18,19]:

ρS
∂2 w(x, t)

∂t2
+ EI

∂4 w(x, t)

∂x4
− ρ I

(
1 + E

κG

)
∂4 w(x, t)

∂x2∂t2

+ ρ2 I

κG

∂4 w(x, t)

∂t4
= 0, (1)

where ρ , S , E , G , I , and κ respectively represents the density, the 
cross-sectional area, the Young’s modulus, the shear modulus, the 
cross-sectional area moment of inertia, and the Timoshenko shear 
coefficient. For a steady-state vibration response, the amplitude of 
the transverse deflection w(x, t) = φ(x)eiωt satisfies:

φ(4)(x) − αφ(2)(x) − βφ(x) = 0, (2)

where

α = −ρω2

E
− ρω2

κG
(3a)

and

β = ρSω2

EI
− ρ2ω4

EκG
. (3b)

By solving the corresponding characteristic equations, the general 
solution for Eq. (1) can be expressed as a linear combination of 
cosine, sine, hyperbolic cosine, and hyperbolic sine functions as 
follows:

φ(x) = A cos(λ1x) + B sin(λ1x) + C cosh(λ2x) + D sinh(λ2x), (4)

where
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√√√√√
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4
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2
(5a)

and
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4
+ α

2
. (5b)

Next, we consider the supercell of the infinite PC Timoshenko 
beam with a point crystal defect illustrated in Fig. 1. The amplitude 
of the flexural deflection of the jth segment in the nth supercell 
can be described as:

φ
j

n(x j) = A j
n cos

(
λ

j
1x j

) + B j
n sin

(
λ

j
1x j

) + C j
n cosh

(
λ

j
2x j
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n sinh
(
λ

j
2x j

)
, (6)

where x j = x − nb − ( j − 1)a and nb + ( j − 1)a ≤ x ≤ nb + ja, 
j = 1, 2, 3, . . . , r. The four interfacial continuity conditions of the 
transverse displacement, the angle of rotation, the bending mo-
ment, and the shear force between jth and ( j − 1)th segment can 
be written as:

φ
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n (a) (7a)
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Eqs. (7) can be further expressed in a matrix form:
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Then, the relationship between the adjacent cells can be estab-
lished by a transfer matrix as:

Ψ 1
n+1 = TΨ 1

n, (10)

where T = K−1
1 HrK−1

r Hr−1 · · · K−1
2 H1. Since now the flexural wave 

is propagated in an infinite periodic beam, the well-known Bloch 
theorem is satisfied and can be applied between the state vectors 
of the adjacent supercells as:

Ψ 1
n+1 = eiqLΨ 1

n, (11)

where q is the wavenumber. By solving the corresponding eigen-
value problem obtained by subtracting Eq. (11) from Eq. (10):∣∣T − eiqLI

∣∣ = 0, (12)
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