
Physics Letters A 380 (2016) 3970–3976

Contents lists available at ScienceDirect

Physics Letters A

www.elsevier.com/locate/pla

A minimalist approach to conceptualization of time in quantum theory
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Ever since Schrödinger, Time in quantum theory is postulated Newtonian for every reference frame. 
With the help of certain known mathematical results, we show that the concept of the so-called Local 
Time allows avoiding the postulate. In effect, time appears as neither fundamental nor universal on the 
quantum-mechanical level while being consistently attributable to every, at least approximately, closed 
quantum system as well as to every of its (conservative or not) subsystems.
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1. Introduction

Schrödinger’s Quantum Mechanics in [1–3], is timeless when he 
introduced his fundamental equation as a time-independent equa-
tion

Hψ = Eψ. (1)

Here E ∈ R and the Hamiltonian H is of the form

H = h̄2

2m
p2 + V (x), V (x) = − e2

|x| , (2)

where

p = 1

i

∂

∂x
= 1

i

(
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,

∂

∂x2
,

∂

∂x3

)
(3)

is the momentum operator conjugate to the position operator 
x = (x1, x2, x3). With this stationary Schrödinger equation, he could 
successfully give an explanation of the spectral structure of hydro-
gen atoms, showing that his formulation of quantum mechanics as 
the eigenvalue problem of a partial differential operator is valid. 
Later he proved in [4] that his formulation is equivalent with 
Heisenberg’s formulation of QM. Without loss of generality, we as-
sume m = 1 later on.

In the subsequent part [5] he emphasized the necessity to give 
a time-dependent expression of the equation in order to treat the 
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nonconservative systems, and gave a time-dependent equation for 
general Hamiltonians

h̄

i

dψ

dt
(t) + Hψ(t) = 0. (4)

Schrödinger then applied the equation to some time-dependent 
perturbations with an emphasis of the advantage of the time-
dependent approach. He however gave no justification for the no-
tion of time which is assumed for the equation. That is, “time” is 
postulated [5] to be unique and universally valid throughout the 
universe as Newton put it in his Principia Mathematica.

Exactly the same physical nature of time is assumed for the 
standard text-book approach to quantum dynamics that is based 
on the unitary operator U (t), which defines a dynamical map for 
quantum systems, �(t) = U (t)�(t = 0). Hence we can detect the 
following two assumptions (postulates) built in the fundamental 
equation for quantum systems dynamics. The first assumption is 
the equation’s mathematical form provided by eq. (4), which here 
we adopt without modification. The second assumption is that 
quantum dynamics unfolds within the classical Newtonian univer-
sal (global) time. However, at least as a logical possibility, removing 
the second assumption is not excluded and, if successful, might 
make the quantum foundations even more efficient—the less num-
ber of postulates, the better theory.

Avoiding this assumption is not a trivial task, which we under-
take in this paper. Rejecting the in-advance-agreed role of “physical 
time” for the parameter t in the unitary operator U (t) elevates to 
the following two related problems. First, if not in advance, then 
certainly a posteriori the role of the parameter t as physical time 
should be rigorously established; non-rigorous procedures typically 

http://dx.doi.org/10.1016/j.physleta.2016.10.010
0375-9601/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.physleta.2016.10.010
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/pla
mailto:dugic@open.telekom.rs
http://dx.doi.org/10.1016/j.physleta.2016.10.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physleta.2016.10.010&domain=pdf


H. Kitada et al. / Physics Letters A 380 (2016) 3970–3976 3971

assume certain additional rules and assumptions, often of the in-
terpretational relevance, that here we are not interested in. Second, 
without a postulate or an interpretational framework, it is not 
obvious how to link the time-independent Hamiltonian of closed 
system with the notion of time. These subtle points are regarded in 
Sections 4 and 5 with the general mathematical basis provided in 
Section 2. As a result, in Sections 3 and 4 we emphasize a possibil-
ity to introduce a notion of time for an arbitrary (including many-
particle) closed system with the time-independent Hamiltonian. We 
perform without resorting to any ad hoc procedures or additional 
assumptions—such as existence of the system’s environment, be it 
classical [6] or not, or time quantization [7], or in-advance-agreed 
character of physical time. Expectably, such possibility comes at 
certain price, which in our approach is that time is neither funda-
mental nor universal on the quantum-mechanical level, and can be 
recognized as the so-called (quantum-mechanical) local time [8].

2. N-particle system

In this section we consider a general conservative (i.e. closed) 
quantum mechanical system consisting of N particles; we take a 
unit system such that h̄ = 1. For such a system of N(≥ 2) quan-
tum mechanical particles with mass mi(> 0) located at ri ∈ R3

(i = 1, . . . , N), Hamiltonian [see also (38) in Appendix A]

H = −
N∑

i=1

1

2mi
�ri + V (x) =

N∑
i=1

1

2mi

(
1

i

∂

∂ri

)2

+ V (x),

V (x) =
∑

1≤i< j≤N

V ij(xij),

(5)

where � = �ri =
(

∂
∂ri

)2 = ∑3
j=1

∂2

∂r2
i j

(ri = (ri1, ri2, ri3) ∈ R3) is 

Laplacian and V ij(xij) (xij = ri − r j) is a pair potential working be-
tween the pair of particles i and j. When we consider the relative 
motion of N particles, we can separate the motion of the center of 
mass as follows. The center of mass of this N-particle system is

XC = m1r1 + · · · + mNrN

m1 + · · · + mN
. (6)

Defining the Jacobi coordinates by

xi = (xi1, xi2, xi3) = ri+1 − m1r1 + · · · + miri

m1 + · · · + mi
(∈R3),

(i = 1, . . . , N − 1)

(7)

and corresponding conjugate momentum operators by

P C = 1
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, pi = 1
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)
, (8)

we decompose the Hilbert space L2(R3N ) as a tensor product 
L2(R3N ) = L2(R3) ⊗ H, H = L2(R3n) with n = N − 1. Accordingly 
the Hamiltonian H in (5) is decomposed as follows.

H = HC ⊗ I + I ⊗ H̃,

H̃ = H̃0 + V , HC = 1∑N
j=1 m j

P 2
C ,

H̃0 =
N−1∑
i=1

1

2μi
p2

i ,

μ−1
i = m−1

i+1 + (m1 + · · · + mi)
−1 (i = 1, . . . ,n).

(9)

Here I denotes the identity operator. For real potentials V ij(xij), 
H in (5) and H̃ in (9) define self-adjoint operators in the Hilbert 
spaces L2(R3N ) and H = L2(R3n), respectively, and the relative 

motion of the N-particles is described by the Hamiltonian H̃ in 
H = L2(R3n).

By (9), HC ⊗ I is a nonnegative selfadjoint operator in L2(R3)

and describes the free motion of the center of mass of the 
N-particle system whose property is well-known. Our main con-
cern is thus about the relative motion of the N particles. Hence-
forth we will write

H = H̃, H0 = H̃0, (10)

and consider the Hamiltonian in H = L2(R3n)

H = H0 + V =
N−1∑
i=1

1

2μi
p2

i + V (x). (11)

We note that H is defined solely through the configuration oper-
ators x = (x1, . . . , xN−1) and conjugate momentum operators p =
(p1, . . . , pN−1). Thus time-independent QM is completely deter-
mined through position and momentum operators (x, p), since the 
corresponding stationary time-independent Schrödinger equation 
(1) is written as follows.

(H − λI)ψ = 0. (12)

This equation has non-zero solution ψ ∈ H only when λ is an 
eigenvalue of H : λ ∈ σp(H). A complex number λ is said to be-
long to the resolvent set ρ(H), when (12) has only a trivial solu-
tion f = 0 and the bounded inverse (H − λI)−1 : H → H exists. 
R(λ) = R H (λ) = (H − λI)−1 is called the resolvent at λ ∈ ρ(H) of 
H . We review some concepts on spectrum σ(H) of a selfadjoint 
operator H .

Definition 1.

1) The set of all complex numbers λ ∈ C \ρ(H) is called the spec-
trum of H and denoted by σ(H). For a selfadjoint operator H
it is trivial to see that σ(H) ⊂ R.

2) We denote the resolution of the identity corresponding to a 
selfadjoint operator H by E H (λ) (λ ∈R):

E H (λ)E H (μ) = E H (min(λ,μ)),

s- lim
λ→−∞ E H (λ) = 0, s- lim

λ→∞ E H (λ) = I,

E H (λ + 0) = E H (λ),

f (H) =
∞∫

−∞
f (λ)dE H (λ) (∀ f ∈ C(R)),

(13)

where E H (λ + 0) = s- limμ↓λ E H (μ) and C(R) is the set of 
all complex-valued continuous functions on R. An operator-
valued measure E H (B) (B ⊂ R : Borel set) is defined by the 
relation E H ((a, b]) = E H (b) − E H (a) for −∞ < a < b < +∞.

3) Set P (λ) = E H (λ) − E H (λ − 0) (λ ∈ R). We note that P (λ) �= 0
iff λ is an eigenvalue of H . When λ ∈ σp(H), P (λ)H is the 
eigenspace of H for λ ∈ σp(H). The pure point spectral sub-
space (or eigenspace) Hp(H) for H is defined as the closed 
linear hull of the set⋃
λ∈R

P (λ)H. (14)

Eigenprojection P H is the orthogonal projection onto Hp(H).
4) The continuous spectral subspace for H is defined by

Hc(H) = {ψ | E H (λ)ψ

is continuous with respect to λ ∈R}, (15)

and the absolutely continuous spectral subspace for H by
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