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In order to shed light on understanding the subgrid-scale (SGS) modelling methodology, we analyze 
and define the concepts of assumption and restriction in the modelling procedure, then show by a 
generalized derivation that if there are multiple stationary restrictions in a modelling, the corresponding 
assumption function must satisfy a criterion of orthogonality. Numerical tests using one-dimensional 
nonlinear advection equation are performed to validate this criterion. This study is expected to inspire 
future research on generally guiding the SGS modelling methodology.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The large-eddy simulation (LES) technique has achieved great 
success in the last half-century in both academic community and 
industry applications [1–3]. Numerous SGS models have been in-
troduced under various frameworks. The classification and com-
parison of these models can be found in literature [1,4–8]. These 
subgrid-scale (SGS) models clearly show the variety of the tur-
bulence community and illustrate the common interest of SGS 
modelling. However, confusions are also involved in these distinc-
tive SGS models: (i) in the engineering community, researchers are 
usually not able to a-priori suggest the best SGS model for a typi-
cal problem and (ii) in the turbulence community, researchers may 
also be confused on the (necessary) criterion of constructing an 
SGS model. Reference [9] concluded three basic requirements for 
evaluating a good SGS model, which is helpful for clarifying the 
first confusion. However, the second point is still not clear, which 
indeed calls for better understanding on SGS modelling procedure. 
Specifically, as researchers on SGS modelling, how should we “cor-
rectly” involve physical and mathematical restrictions to model the 
SGS quantities?
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In recent years, along with developing the SGS models using 
the Kolmogrov equation of filtered velocity (KEF) [10–14], we have 
also been curious on clarifying the high-level methodology of SGS 
modelling. In fact, we found that when employing these SGS mod-
els, if we calculate the model coefficient dynamically, the LES cal-
culations are usually unstable. Instead, a constant model coefficient 
usually leads to better performance. This fact has been discussed 
in Refs. [3,13,15], but we did not manage to give a convincing 
theoretical explanation. In Ref. [3] we summarized the various at-
tempts of this modelling methodology, and phenomenally guessed 
that there are some conflicts among the assumptions and restric-
tions in SGS modelling.

In order to better explain the research context and to define 
the terms, here we review our analysis on the procedure of SGS 
modelling methodology. In general, by reviewing the existing SGS 
models, we describe the procedure of SGS modelling as the follow-
ing two steps [3,16,17]:

(i) Any SGS model should be based on a certain assumption on 
the SGS motion, that is, we need to assume a formulation for 
SGS quantities (in particular, the SGS stress tensor). However, 
there are always undetermined factors in this assumption.

(ii) A complete SGS model should employ a certain closure 
method to determine the unknown factors mentioned in 
step (i). This closure implies one or more restrictions in ei-
ther physical or mathematical frameworks.
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Let us comment on the definitions of assumptions and restric-
tions, which are abstract conceptions of the above two-step de-
scription. There are various assumptions such as the eddy-viscosity 
assumption [18], the scale-similarity assumption [19], the gradi-
ent diffusion assumption [20], the velocity increment assumption 
[13,21], etc. We conclude that an assumption assumes a (local) sim-
ilarity between GS and SGS quantities. Usually there can not be two 
or more assumptions at the same time in one SGS model. By con-
trast, a restriction is a physical or mathematical simplification which 
is employed in the SGS modelling closure. There are various types of 
restrictions, for example the inviscid simplification [10], the scal-
ing laws [15,22–24], the filter similarity [25], the velocity profile 
restriction [26], etc. We remark that there can be multiple restric-
tions in one SGS model, for example in Ref. [10] four restrictions are 
employed: the inviscid simplification, the scaling law, the station-
ary simplification of structure function, and the subgrid feasibility 
for Taylor expansion. In general, the reason of choosing multiple 
restrictions is that we hope the generated turbulence can satisfy 
more physical or mathematical laws. Whereas, sometimes multiple 
restrictions lead to non-negligible error but we do not know the 
reason.

As introduced above, from previous numerical practices we in-
tuitively feel that there are some conflicts among the assumptions
and restrictions in SGS modelling. Aiming at demonstrating that, 
considering the complexity of different restrictions, in this contri-
bution we choose a simple type of restriction, i.e., the stationary 
restriction for a statistical quantity. We will show by a general-
ized derivation that if there are multiple stationary restrictions in 
a modelling, the corresponding assumption function must satisfy a 
criterion of orthogonality. Numerical tests in one-dimensional non-
linear advection equation are performed to support this criterion.

2. Theoretical analysis

We consider here the general formulation of a nonlinear partial 
differential equation

∂u

∂t
= f (u), (1)

where t is time and u is a continuous physical quantity. For sim-
plicity, here we consider u as a scalar function. f (u) is a nonlinear 
function, which needs an SGS modelling in numerical applications. 
Defining •̄ the grid-scale filter operator, Eq. (1) can be rewritten 
as

∂ ū

∂t
= f (ū) + τ , (2)

with τ the SGS term which needs to be modelled. As introduced in 
the previous section, we should involve one assumption and some 
restriction(s). In this contribution we only consider typical station-
ary restrictions for a statistical quantity, which can be written as

∂〈hi(ū)〉
∂t

= 0, (3)

with i = 1, 2, ..., n and n the number of restrictions, hi a nonlin-
ear function, and 〈•〉 the ensemble average. We remark that, for 
example, this type of restrictions can refer to the stationary simpli-
fication of resolved longitudinal structure function D<

ll [10,11], and 
the stationary simplification of Lagrangian velocity gradient corre-
lation [27]. Here we consider that there are two restrictions h1 and 
h2, and use the following methodology to involve an assumption to 
link the resolved and SGS quantities.

Multiplying both sides of Eq. (2) with dh1(ū)
dū and by noting that 

∂h1(ū)
∂t = dh1(ū)

dū
∂ ū
∂t , we can obtain

∂h1(ū)

∂t
= dh1(ū)

dū
f (ū) + dh1(ū)

dū
τ . (4)

Taking ensemble average on Eq. (4) and by noting the restriction
(3), it is〈

dh1(ū)

dū
f (ū) + dh1(ū)

dū
τ

〉
= 0. (5)

In order to satisfy the statistical property (5) by keeping the in-
stantaneous scale-similarity, in SGS modelling we usually introduce 
an assumption here, which involves a function Z(ū) of the resolved 
quantities ū with zero average and suppose that it is locally sim-
ilar to the average-zero SGS expression dh1(ū)

dū f (ū) + dh1(ū)
dū τ . This 

is an abstraction of practical assumptions, such as the viscosity as-
sumption which assumes a local similarity between the trace-zero 
SGS tensor τi j − 1

3 τkkδi j (which is analogy to dh1(ū)
dū f (ū) + dh1(ū)

dū τ ) 
and the resolved strain rate S̄ i j (which is analogy to Z(ū)) with δ
Kronecker delta. We therefore write this local similarity as

dh1(ū)

dū
f (ū) + dh1(ū)

dū
τ = Z(ū), (6)

which yields the expression of the SGS quantity

τ = 1
dh1(ū)

dū

(
Z(ū) − dh1(ū)

dū
f (ū)

)
. (7)

The above procedure describes a generalized methodology for 
determining the SGS quantity with one assumption and one re-
striction. However, as introduced in the previous section, there are 
usually multiple restrictions in an SGS modelling. It is then inter-
esting to see whether other restrictions are able be satisfied under 
this procedure. Substituting Eq. (7) to (2) for i �= 1, and multiplying 
both sides with dhi (ū)

dū , we obtain

∂hi(ū)

∂t
= Z(ū)

dhi(ū)

dū

/
dh1(ū)

dū
. (8)

Taking ensemble average, it is shown that the restrictions (3) lead 
to〈
Z(ū)h′

i(ū)
/

h′
1(ū)

〉 = 0. (9)

If we consider ū as a random variable with probability density 
function (PDF) ρ(ū), Eq. (9) can be rewritten as

+∞∫
−∞

Z(s)Hi(s)ρ(s)ds = 0, (10)

where Hi is defined as Hi = h′
i

/
h′

1, and s is the variable of inte-
gration in probability space for replacing ū in Eq. (9). This can also 
be further rewritten as a formula of inner product

Z · Hi :=
+∞∫

−∞
Z(s)Hi(s)ρ(s)ds = 0. (11)

This inner product then defines an inner product space with a 
weight function ρ . The restrictions hi correspond to a series of el-
ements Hi in this space, while Z(s) must be orthogonal to the 
linear subspace Vect(H1, H2, ..., Hn). This describes a criterion of 
orthogonality on the assumption and restrictions.

3. Numerical tests

In this section we select the most simple nonlinear partial dif-
ferential equation, i.e., the one-dimensional nonlinear advection 
equation, or say, the one-dimensional inviscid Burgers equation, 
to validate the conclusions in the present contribution. We re-
mark that the analysis of the previous section might also be used 
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