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By using a triangular shaped aperture it was shown recently that the topological charge of a coherent 
optical beam could be measured. As the diffraction pattern generated by any setup depends exclusively 
on the coherence properties of the optical field, we have extended this method by including partially 
coherent light into the system.

© 2016 Published by Elsevier B.V.

1. Introduction

Since the discovery of phase singularities (wave dislocations, 
optical vortices) in 1974 a new branch of optical research, now 
named singular optics, started to be extensively investigated by 
numerous research groups [1,2]. For a given scalar solution of the 
wave equation there may be lines in space where the amplitude 
of the wave vanishes and therefore its phase becomes ill-defined. 
These are lines in three dimensions because the definition for 
these singular points requires the intersection of two (in general, 
generic) surfaces: the real and imaginary parts of the complex 
scalar solution must both vanish. If one is dealing with high sym-
metrical physical systems (such as laser modes) the singular re-
gions may form surfaces in three dimensions rather than lines. One 
possible way to characterize these singular phase points is to ob-
serve how much the phase increases around a specific singularity 
from an arbitrary predefined fixed orientation sense and to divide 
this number by 2π . The value obtained is called the topologi-
cal charge and it may assume ±1 values for generical wavefields 
although it may assume any integral value for nongeneric solu-
tions [3]. Eighteen years later, L. Allen et al. correctly associated an 
orbital contribution to the angular momentum of a light beam [4]. 
It turned out that this contribution was due to an exp(imφ) phase 
term where m is an integer and φ the polar angle in cylindri-
cal coordinates, leading to a screw phase singularity, and this is 
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the main reason why people usually associate phase singularities 
with orbital angular momentum. It should be remarked that this 
association is not entirely correct but it does make sense for some 
specific solutions such as Laguerre–Gaussian beams [5,6]. Although 
the total angular momentum of a light beam is not directly asso-
ciated with phase singular points, the beam angular momentum 
density plays a dynamical role in the occurrence of such singular-
ities. Optical beams with screw phase singularities may be used 
to rotate particles and the resulting topological charge has a di-
rect connection with this interaction [7,8]. Therefore, topological 
charge measurement is an important issue and it was addressed 
by several authors (see for example, [9]). In particular, an inge-
nious diffraction-based method has been proposed in which the 
counting of maxima in a diffraction pattern determines both sign 
and modulus of the topological charge of an incident beam, pos-
sessing a nongeneric screw phase singularity, after it goes through 
a triangular aperture [10]. However, in experiments like that where 
the detailed structure of diffraction is important, coherence ef-
fects should influence in a decisive manner the results in such a 
way that by ignoring the statistical aspects of the incident field, 
one should expect considerable divergence between theory and 
experiment. Furthermore, to acquire knowledge on correlation sin-
gularities is essentially important in a wide range of phenom-
ena such as imaging science, studies on the propagation of vor-
tex fields through atmospheric turbulence, or even in astrophysics 
where partially coherent light is often present. In particular, the 
results reported here can affect severely the propagation of opti-
cal vortices through atmospheric turbulence and consequent the 
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Fig. 1. System used for diffraction pattern calculations. S is a spatially incoherent 
source, the aperture plane contains an equilateral triangular aperture with a phase 
dependent spatial function of the form exp(imφ) and the resulting intensity pattern 
I(x, y) is displayed in the observation plane.

transmission of information in such media [11–13]. Here, a the-
oretical extension of the proposed triangular aperture experiment 
to measure the topological charge is carried out by studying the 
diffraction of a partially coherent beam through a triangular aper-
ture. In this way, we hope to grasp the limitations of the method as 
well as to establish coherence range areas that will provide visible 
enough results that allows one to count the number of intensity 
maxima. It should be pointed out that we are not considering 
speckle fields into our system. It is known that second order field 
correlations with speckles are not suitable regarding the identifi-
cation of topological charges in diffraction patterns, although they 
can be useful in intensity correlation measurements [14].

2. Theory

When dealing with partial coherent wavefields, the mutual co-
herence function �(r, r′, τ ) = 〈

E(r, t)E(r′, t + τ )
〉

is used to de-
scribe how the fluctuations of the field points r and r′ are cor-
related after a time delay τ . In our considerations we suppose 
a quasimonochromatic stationary light source and neglect tempo-
ral effects, as the mean frequency ν̄ of the source is assumed to 
be much smaller than its bandwidth �ν . Hence, in the follow-
ing we shall be concerned with the mutual intensity J (r, r′) =
�(r, r′, 0) or its normalized version, the complex coherence fac-
tor μ(r, r′) [15]. Our interest here is in the partially coherent field 
generated by an extended uniform source, after it passes through 
a spatial dependent phase mask. Such system was studied initially 
by Swartzlander and coworkers who have shown that the cross-
correlation function χ(r) = J (r, −r) retains the topological charge 
information in a dislocation ring as opposed to the transmitted 
intensity which assumes no zero amplitude values [16]. One inter-
esting result was that the radius of the dislocation ring increased 
as the coherence of the source decreased, implying that one could 
measure the value of the topological charge of very highly inco-
herent sources. In [17] it was shown numerically that the number 
of dislocation rings in the cross-correlation function was equal to 
the topological charge value and in [18] the authors compared 
the dislocation rings in the cross-correlation function with that al-
ready presented in the uniform incoherent circular source. Here 
we propose a slightly different setup in which the spatial phase 
dependence is incorporated into a triangular aperture. It should be 
remarked that phase singularities of the mutual coherence func-
tion were also studied by several authors [19–22].

The physical system is depicted in Fig. 1. The calculation was 
divided in two parts. In the first part we specify the geometrical 
properties of the incoherent source S , which in our case it was 
considered to be either a circular source with radius R or a square 
source with side length b. Light from the incoherent source passes 
through the aperture plane P , located at a distance d1 from the 
incoherent source plane, which is composed of an equilateral tri-
angular aperture with a phase dependent spatial function of the 
form exp(imφ) where m is an integer also know as the topological 

charge. In the second part of the calculation the field is propagated 
to the observation plane (x, y) and the diffraction pattern is calcu-
lated by solving an integral transform as described next.

In order to find the desired intensity pattern, we must first 
calculate the complex coherence factor μ that is created by the 
incoherent source at the aperture plane. One way to accomplish 
this task is to use the Van Cittert–Zernike theorem [15]. The theo-
rem states that the complex coherence factor is proportional to the 
two dimensional Fourier transform of the intensity profile I(ζ, η)

of the incoherent source:

μ ∝
∫ ∫

I(ζ,η)exp

[
i

2π

λmd1
(x′ζ + y′η)

]
dζdη, (1)

where (ζ, η) is the plane containing the source, (x′, y′) the aper-
ture plane, λm the mean wavelength and d1 the distance indicated 
in Fig. 1. It was assumed that the distance d1 is much larger than 
the distance between any pair of points belonging to the source 
(the actual physical source, not the source plane, of course). With 
the complex coherence factor in hands, it is necessary to calculate 
the autocorrelation function of the transmittance aperture, given 
by

℘(x′, y′) =
∫ ∫

t

(
u − x′

2
, v − y′

2

)
t∗

(
u + x′

2
, v + y′

2

)
dudv,

(2)

where t(x′, y′) is equal to exp(imφ′) if (x′, y′) lies inside the tri-
angle or it vanishes otherwise, as indicated in Fig. 2. Now that 
both, the complex coherence factor and the aperture autocorre-
lation function, are known we are able to obtain the intensity 
pattern at the observation plane (x, y):

I(x, y) ∝
∫ ∫

℘(x′, y′)μ(x′, y′)exp

[
i

2π

λmd2
(xx′ + yy′)

]
dx′dy′,

(3)

which is expressed as a two dimensional Fourier transform of the 
product of the functions ℘ and μ. This result is also known as 
Schell’s theorem. It was assumed again that the distance d2 is 
much larger than the mean wavelength and the characteristic size 
of the aperture.

3. Results and discussion

Consider first a circular incoherent source of radius R de-
scribed by the intensity profile I(ζ, η) = 1 if (ζ 2 + η2)1/2 ≤ R and 
I(ζ, η) = 0 if (ζ 2 + η2)1/2 > R . To calculate the complex coherence 
factor we use Equation (1), resulting in

μcirc(x′, y′) ∝
J1

(
2π R
λmd1

√
x′ 2 + y′ 2

)
2π R
λmd1

√
x′ 2 + y′ 2

, (4)

where d1 is the distance between the source and the aperture 
planes (Fig. 1). It is useful to define the coherence area Acoh by 
the following expression

Acoh =
∫ ∞∫

−∞
|μ(x′, y′)|2dx′dy′. (5)

For a circular incoherent source of radius R we have Acirc
coh =

(λmd1)
2/π R2. A naive interpretation of the coherence area is that 

higher values of Acoh describes higher coherent fields. By introduc-
ing the aperture area, Aap = √

3a2/2, where a is the length side of 
the triangle, we can define the coherence ratio J as

J = Acoh

Aap
, (6)
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