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Drifting of sand particles bouncing on a vibrating membrane of a Chladni experiment is characterized 
statistically. Records of trajectories reveal that bounces are circularly distributed and random. The mean 
length of their horizontal displacement is approximately proportional to the vibration amplitude above 
the critical level and amounts about one fourth of the corresponding bounce height. For the description 
of horizontal drifting of particles a model of vibration driven random walk is proposed that yields a good 
agreement between experimental and numerically simulated data.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Accumulation of sand particles at nodal lines of vibrating sur-
faces was first observed by Robert Hook in 1680 and utilized a 
century later by Ernst Chladni in a series of inventions for visu-
alization of vibrations that have significantly contributed to the 
development of vibration science and acoustics [1,2]. Since vari-
ations of Chladni’s technique are still commonly used in the pro-
duction of acoustic instruments [2], it is rather surprising that so 
far the accumulation phenomenon has remained physically rather 
incompletely explained. This fact appears even more remarkable in 
regard to the extent of theoretical and experimental explorations 
of bouncing phenomena in the development of chaotic dynam-
ics [4–7], and more recent explorations of bouncing and granular 
flow phenomena [8–18]. The reason for this incompleteness is the 
complexity of the governing dynamics whose modeling requires a 
consideration of the chaotic phenomena involved, stochastic prop-
erties of particle shape and vibrating surface roughness, dissi-
pation of energy by friction or collisions between particles, and 
substrate wave motion. This variety prevents a proper analytical 
description of the Chladni pattern formation by a single dynamic 
model.

Merely by intuition one can presume that, irrespectively of the 
mechanism details [2,3], the particles drift by successive bounces 
from regions of intense vibrations to regions around nodal lines, 
where the vibration amplitude vanishes. The aim of this letter is 
to provide an experimental support for such reasoning based upon
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the measured statistical characteristics of the phenomenon. For 
this purpose the movement of sand particles in a simple Chladni 
experiment on a circular elastic membrane is explored. The goal 
is to provide a simple statistical basis by which the formation 
of Chladni patterns could be modeled by methods developed for 
the random walk phenomena [19]. In order to avoid treatment 
of interaction between particles, we consider just examples with 
low surface density of particles and characterize the properties of 
bouncing by experiments with individual particles.

Recent investigations of bouncing phenomena have shown 
[8–18] that their mechanism is rather complex [4–6] and could 
hardly be applied in a simple modeling of pattern formation. 
Chladni experiments are usually performed with sand particles of 
rather irregular form which introduces randomness. Therefore, the 
evolution of a Chladni pattern is a stochastic process and we first 
describe its properties statistically based upon experimental data. 
The bouncing includes vertical and horizontal displacements. The 
latter lead to the formation of the Chladni pattern and we utilize 
the horizontal component of particle displacement as the basis for 
our description.

The dynamics of bouncing involves tossing of particles by the 
vibrating surface with acceleration a(�r) = ω2z(�r), where ω is the 
angular frequency and z(�r) the vibration amplitude at the po-
sition �r, as well as falling with acceleration of gravity g . The 
bouncing commences above the critical level zc = g/ω2 where 
a(�r) exceeds g and therefore, we describe the forced bouncing in 
terms of the relative acceleration amplitude A(�r) = (a(�r) − g)/g , 
that equals the relative vibration amplitude above the critical level 
A(�r) = z(�r)/zc − 1. The bouncing is present if A > 0, and absent if 
A ≤ 0. At nodal lines A is close to zero and the bouncing excited 
in regions with A > 0 terminates there.
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Fig. 1. Scheme of the experimental system. SG – signal generator, LS – loudspeaker, 
C – camera, M – membrane, P – particle.

Fig. 2. Probability density f = dN/(Ndχ) of particle height χ . Solid line: fm – esti-
mated from measured data, dashed line: fn – corresponding normal distribution.

2. Experiment and analysis

The experiment is performed on the experimental system 
shown in Fig. 1. Bouncing of particles takes place on a circular 
rubber membrane of radius r0 = 152 mm, thickness 1 mm, density 
1.134 kg/dm3, and surface tension 0.194 N/mm. It is tightened 
into a frame that is mounted horizontally above the loudspeaker. 
The resonant vibration of the membrane first fundamental mode 
is excited by the air pressure from a loudspeaker driven by a si-
nusoidal voltage of frequency f = 36.8 Hz provided by a signal 

generator. With respect to the properties of resonance phenomena, 
we assume that in this case the radial dependence of the vibra-
tion amplitude is given by z(r) = z0 J0(2.4 r/r0), where z0 is the 
amplitude in the center, J0 the Bessel function, and 2.4 its first 
zero. The amplitude of the excitation signal is set so that the crit-
ical vibration amplitude zc of 0.18 mm is reached at the critical 
radius rc of 95 mm. In this case z0 equals 2 zc and the span of A
extends from 0 to 1.

The testing ensemble includes N = 30 quartz particles of ap-
proximately tetrahedral form. The probability density function 
(PDF) f (χ) = dN/(Ndχ) of their height χ is shown in Fig. 2. It 
is approximately normal with the mean value 〈χ 〉 = 1.55 mm and 
standard deviation �χ = 0.38 mm.

In the experiments the bouncing of single particles is followed. 
A particle is put to the center of the membrane at rest and then 
the vibration is excited by switching on the signal generator. The 
trajectories of particles are recorded by a photo camera at time 
intervals δt = 1/3 s, and the entire record is comprised of 45 im-
ages taken within 15 s. From the ensemble of the recorded hor-
izontal position vectors �rn(τ ), with 1 ≤ n ≤ 30 and 1 ≤ τ ≤ 45, 
we first determine the ensemble of corresponding relative radius
Rn(τ ) = rn(τ )/rc and amplitudes An(τ ). In addition, the successive 
displacement samples �sn(τ ) = �rn(τ + 1) − �rn(τ ) in the exposure 
times t = (τ − 1)δt are also determined. The corresponding nor-
malized displacement vectors are �Sn(τ ) = �sn(τ )/rc . The mean over 
the ensemble of particles < . . . >= ∑

n(. . .)/N and the standard 
deviation �(...) = √

var(. . .) of variables R , A, and S are further 
considered as basic characteristics of the bouncing phenomenon.

Fig. 3a) shows four sample trajectories from the center of mem-
brane toward the critical radius, whereas Fig. 3b) shows the time 
dependence of the corresponding relative radius R = r/rc . Both fig-
ures indicate stochastic character of bouncing. Fig. 4a) shows the 
distribution of the normalized displacement vectors �Sn(τ ), while 
Fig. 4b) shows the time dependence of their x-components Sx for 
the sample trajectories shown in Fig. 3a). Some basic properties 
of Sx are demonstrated in Fig. 5. Fig. 5a) indicates that the values 
of Sx are approximately symmetrically distributed around zero at 
a given vibration amplitude A, while the spread of the distribu-
tion increases with A. The relation between the standard deviation 
�Sx and the mean amplitude 〈A〉 over the ensemble of particles 
is presented in Fig. 5b). The corresponding linear regression line 
�Sx = κ 〈A〉, with κ ≈ 0.16, indicates that on average the distribu-
tion spread increases linearly with 〈A〉.

The probability density function (PDF) determined by Parzen’s 
kernel estimator [20] from the data �Sn(τ ) presented in Fig. 4a) 

Fig. 3. a) Four samples of recorded particle trajectories; dashed circle has radius rc . b) Time dependence of the relative radius R = r/rc from trajectories in Fig. 2a).
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