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Quantum walks constitute a promising ingredient in the research on quantum algorithms; consequently, 
exploring different types of quantum walks is of great significance for quantum information and quantum 
computation. In this study, we investigate the progress of quantum walks with a variable absorbing 
boundary and provide an analytical solution for the escape probability (the probability of a walker 
that is not absorbed by the boundary). We simulate the behavior of escape probability under different 
conditions, including the reflection coefficient, boundary location, and initial state. Moreover, it is also 
meaningful to extend our research to the situation of continuous-time and high-dimensional quantum 
walks.

© 2016 Published by Elsevier B.V.

1. Introduction

A random walk describes the stochastic motion of a particle 
around a discrete space and is widely applied as a statistical tool 
in areas ranging from physics to computer science and from eco-
nomics to biology [1]. In a classical version of a random walk with 
discrete steps, every time a walker arrives at a crossroad, he has 
to choose the route to take by flipping a coin [with heads (tails) 
leading to the left (right)]. After several random steps the posi-
tion of the walker is described by a Gaussian distribution. For the 
quantum case, we define a two-dimensional Hilbert space, the coin 
space Hc , spanned by {|L〉 , |R〉}, and the walker space Hw , an 
infinite-dimensional Hilbert space which is spanned by {|x〉}, with 
x supposing all possible integer values. The state of the system is 
described as a tensor product Hc

⊗
Hw and the evolution of the 

system is given by a sequence of coin-tossing and shift operations. 
The unitary operator of the evolution is given first by using the 
unitary coin-flipping operator

Ĥ (θ) =
(

cos θ sin θ

sin θ − cos θ

)
, (1)

and then following it by a conditional shift operation

Ŝ =
∑

x

[|L〉 〈L| ⊗ |x − 1〉 〈x| + |R〉 〈R| ⊗ |x + 1〉 〈x|]. (2)

The final state after t steps of evolution is indicated by the expres-
sion

E-mail address: zhangpei@mail.ustc.edu.cn (P. Zhang).

|�t〉 =
{

Ŝ ·
[

Ĥ (θ) ⊗ Î w

]}t |�0〉 . (3)

For different initial coin states, a quantum walk gives different 
probability distributions of the walker. Moreover, the modulus of 
a superposition of complex amplitudes, in contrast with the addi-
tion of positive weights in a classical manner, leads to the standard 
deviation of the probability distributions being proportional to t
rather than the square root dependence of the classical random 
walk. Thus, the quantum walk offers a quadratic gain over its clas-
sical counterpart.

Since the seminal paper by Aharonov et al. establishing a quan-
tum analogy to the classical walk, different versions and applica-
tions of the original proposal have been widely investigated [2–11]. 
It has been demonstrated that quantum walks can be used to 
realize quantum search algorithms and universal quantum compu-
tation [12–15]. Furthermore, quantum walks present a versatile ap-
proach to model the energy transfer in photosynthetic systems [16,
17], quantum diffusion [18,19], and electrical breakdown [20,21]. 
Accordingly, quantum walks may pave the way to simulate, control, 
and understand the dynamics of a variety of physical and biological 
systems. Meanwhile, experimental implementations of quantum 
walks have been presented in recent years by using trapped ions 
[22–24], atoms [25,26], nuclear magnetic resonance systems [27,
28], waveguides [29–34], and photons [35–43]. All these achieve-
ments have attracted more attention to quantum walks and are 
advancing the field toward the ultimate goals of quantum compu-
tation.

Recently, the one-dimensional quantum walk with an absorb-
ing, reflecting boundary has been widely analyzed in many papers 
[44–47]. In 2006, Amanda et al. investigated the two-dimensional 
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quantum walk in infinite and finite lattices with rectangular and 
diamond boundaries [48]. Leong et al. also studied the one-
dimensional quantum walk with a moving absorbing wall [49]. 
Our research focuses on the situation of a quantum walk with 
a variable reflective boundary. We first describe the definition of 
this late-model quantum walk and compare it with its classical 
counterpart. Next, we provide an analytical solution for the escape 
probability in this case. Finally, we discuss the impact of the re-
flection coefficient, the boundary location, and the initial state on 
the distribution of quantum walks, and come to a conclusion.

2. Quantum walk with variable reflective boundary

We consider a game that gives a probability p of winning one 
dollar and 1 − p of losing one dollar. If a player has n dollars in 
the beginning, and intends to play until he gains N1 dollars, what 
is the probability that the player will go bankrupt before achiev-
ing his target? This is the well-known gambler’s ruin game [50]. 
The classical walk with an absorbing boundary can be regarded as 
a variant of this game, and we can map this game to a classical 
walk in which the walker starts at position n with an absorbing 
boundary situated at position N . For simplicity, we suppose that 
the walk starts at position 0 and the boundary is placed initially at 
position N = 1. It is acknowledged that the probability to get ab-
sorbed by the boundary is equal to 1 in the long time limit; that is 
to say, the walker will never escape from the absorbing wall in a 
classical random walk. However, for the quantum walk, specifically 
the Hadamard quantum walk (θ = π

4
) with an absorbing bound-

ary in position 1 and starting with the initial state |R〉 ⊗ |0〉, has 
a probability p = 1 − 2/π to escape from the boundary [44]. More 
generally, for different initial states and locations of the bound-
ary the numerical value of the escape probability is nonzero in all 
cases.

For the sake of calculating the escape probability of a quan-
tum walk with boundary, we use the eigenfunction method that is 
mentioned in Ref. [47]. Supposing L(n, t) stands for the amplitude 
of the walker state, which holds coin |L〉 and stays at position n af-
ter t steps and R(n, t) stands for the amplitude of the walker state 
which holds coin |R〉 and stays at position n after t steps. Based 
on the coin-flipping and conditional shift operation discussed in 
the previous section, the dynamical equations of the quantum walk 
can be written as(

L(n, t)
R(n, t)

)
=

(
L(n + 1, t − 1) cos θ + R(n + 1, t − 1) sin θ

L(n − 1, t − 1) sin θ − R(n − 1, t − 1) cos θ

)
,

(4)

and the solutions of Eq. (4) are(
L(n, t)
R(n, t)

)
=

(
Ak
Bk

)
ei(kn−wkt). (5)

To meet the demands of Eq. (4), we can get the eigenfunctions

Ak± = 1√
2N

√√√√1 ± cos k√
1/ρ − sin2k

,

Bk± = ± e−ik

√
2N

√√√√1 ∓ cos k√
1/ρ − sin2k

,

(6)

where N is a coefficient to ensure the probabilities sum to 1 and ρ
is equal to cos2 θ . The corresponding eigenvalues are λk± = e−iωk±

in which ωk+ is equal to −sin−1 (√
ρ sin k

)
, and it gives the dis-

persion relation ωk− = π − ωk+ as well.
As shown in Fig. 1, a boundary with reflection coefficient r is 

located at position M in walker space. The walker will be reflected 

Fig. 1. Diagram of quantum walk on the line with one variable absorbing bound-
ary placed at position M . The walker will either be absorbed by the boundary with 
probability 1 − r2 or be reflected with probability r2. The solid black arrow rep-
resents the dynamical process without the influence caused by the boundary. The 
solid blue arrow shows the reflection when the walker hits the barrier. The dashed 
red arrow indicates that the walker is absorbed by the boundary and would never 
return. (For interpretation of the references to color in this figure legend, the reader 
is referred to the web version of this article.)

or absorbed with the probability r2 or 1 − r2, respectively. Accord-
ing to the settings, in the next iteration we can get the final state 
with the equations:
For n < M − 1:(

L(n, t)
R(n, t)

)
=

(
L(n + 1, t − 1) cos θ + R(n + 1, t − 1) sin θ

L(n − 1, t − 1) sin θ − R(n − 1, t − 1) cos θ

)
,

(7)

for n ≥ M:(
L(n, t)
R(n, t)

)
=

(
L(n + 1, t − 1)

kR(n − 1, t − 1)

)
, (8)

in which

k =
⎧⎨
⎩

− cos θ if n = M,√
1 − r2 if n = M + 1,

1 if n > M + 1.

(9)

Finally, for the boundary condition(
L(M − 1, t)
R(M − 1, t)

)

=
(

L(M, t − 1) + rR(M, t − 1)

L(M − 2, t − 1) sin θ − R(M − 2, t − 1) cos θ

)
. (10)

When the walkers go through the barrier they no longer return, so 
one must have L (M, t) = 0 at all times t .

The boundary condition shown in Eq. (10) indicates that 
L (M − 1, t) = rR (M, t − 1) should be fulfilled consistently. There-
fore, the walker evolves according to Eq. (4) and satisfies this con-
straint condition. However, the eigenstates of the system discussed 
above clearly do not meet the requirements of this condition. The 
only case to ensure L (M, t) vanishes invariably is that the con-
tributions from different k have the same value of ω to interfere 
destructively.

As mentioned in Ref. [44], in order to write the initial condi-
tion as a superposition of eigenfunctions, the simplest way to do 
this is to use the method of images. Therefore, we assume a sys-
tem without a boundary but which has another walker that exists 
symmetrically about the boundary position. This imaginary walker 
enforces that the whole system meets the opportune boundary 
condition and therefore the solutions of the above equations can 
be written in the form:(

L (n, t)
R (n, t)

)
=

∑
k∈(−π/2,π/2)

e−iωk±t
[{

Ck±
(

Ak±
Bk±

)
eikn

+ C(π−k)±
(

A(π−k)±
B(π−k)±

)
ei(π−k)n

}

+
{

Dk±
(

Ak±
Bk±

)
eik(n−2(M−1))

+ D(π−k)±
(

A(π−k)±
B(π−k)±

)
ei(π−k)(n−2(M−1))

}]
. (11)
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