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Phase control of chaos is a powerful technique but little is known about its physical constraints, relevant 
for real systems. As a fact, it has not been explored whether this technique can also be applied when the 
controlling perturbation is not harmonic. Here we apply phase control on a driven double well Duffing 
oscillator using periodic rectangular pulsed perturbations instead of the classical sinusoidal perturbations. 
Experimental measurements and numerical simulations show that this kind of perturbation is also able 
to stabilize the chaotic orbits for an adequate selection of the phase. Furthermore, as the duty cycle 
of the perturbation (that is, the fraction of the time that the periodically pulsed control is active) is 
increased, two separate regimes occur. In the first one, the perturbations leading to stabilization of 
periodic solutions are of constant energy (taken as the product of the duty cycle and the amplitude) 
and in the second one, a saturation phenomenon occurs, implying that increasing energy values of the 
perturbations are wasted. Our results unveil the versatility of the pulsed phase control scheme and the 
importance of energy constraints.

© 2016 Published by Elsevier B.V.

1. Introduction

The Duffing oscillator is a paradigmatic system in nonlinear dy-
namics [1–5] and in the context of chaos control [6–8]. Focusing on 
controlling chaos by means of small periodic perturbations [9–15], 
it emerges the crucial role of the phase difference between the 
driving signal necessary to develop chaos and the sinusoidal per-
turbation necessary for its control. The technique is also known as 
phase control of chaos and its validity has been tested over differ-
ent systems [16–18]. Recently phase control of chaos has been re-
visited from the experimental and theoretical point of view in the 
single- and double well Duffing Oscillators comparing the different 
efficiencies when a perturbation is applied to the two terms con-
stituting the quartic potential or to the driving term [19]. Although 
these investigations have established the amplitude and phase val-
ues necessary to achieve stability, still other aspects remain to be 
explored. For example, it is not clear whether a perturbation with 
a different functional form, such as a periodic pulsed perturbation 
made of rectangular-shaped pulses, could lead to the stabilization 
of the chaotic orbits.
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For this reason, here we explore phase control by using periodic 
rectangular pulsed perturbations. Furthermore, this study provides 
a simple framework to stress the role of the energy content of 
the controlling perturbation, given by the product of its strength 
times its duration (or in other terms the area of the applied control 
signal) a parameter of paramount importance when considering 
applications. Notice that our approach to stabilize periodic orbits 
differs from the Occasional Proportional Feedback (OPF) technique 
proposed by Hunt [20] and the so-called impulsive control meth-
ods [21–24]. OPF relies on an aperiodic pulsed control signal con-
structed on the chaotic output signal and it can be considered as 
a one-dimensional version of the OGY method [6]. The impulsive 
method proposed by Osipov et al. [21] is based on suppressing 
chaos in the return map associated with the trajectories of a con-
tinuous system. Impulsive control of chaos is associated with im-
pulsive differential equations describing evolution processes where 
the state variables are subjected to jumps at some discrete times. 
This kind of control is particularly attractive for modulating digital 
information on a chaotic carrier signal for secure communications 
[22–24].

Thus, in our pulsed phase control scheme, in addition to the 
phase relationships with respect to the driving term, we focus the 
attention on the energy content of the applied perturbation related 
on both its strength and time duration, allowing us to explore in a 
systematic way the relation between these two quantities. Impor-
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Fig. 1. Schematic set-up of a double well Duffing oscillator with phase and perturbation strength sweeping. It includes the Duffing oscillator with outputs x and y and 
electronic components specified as follow: I1 and I3 integrators (LT1114); I2 and I4 inverting amplifiers (LT1114); C1 = C2 = 10 nF; R1 = R2 = R3 = R5 = R7 = R8 = R9 =
R10 = 10 k; R4 = 40 k; R6 = 1, 6 k; M1, M2, M3 and M4 multipliers (MLT04). SW1 is a 2 poles one track switch allowing the selection of automatic (a) and manual (m) 
phase and amplitude sweeping. Driving block generates the sinusoidal driving signal. Control block generates a rectangular pulse. Scan block allows automatic scanning of 
the phase φ and the perturbation strength ε through the ramp signal Rφ and the staircase signal Sε . The trigger output Td of the Driving generator triggers the Control 
generator via the trigger input Ti as the manual sweeping operation is selected by SW1.

tantly, minimal energy perturbations are crucial for a number of 
practical applications, such as in biomedical applications of chaos 
control [25].

2. Experimental validation

Pulsed phase control of chaos is first tested in an analog imple-
mentation of the Duffing Oscillator shown in Fig. 1.

The electronic scheme includes a double well Duffing oscillator 
as already described in Ref. [19] and three blocks, Driving, Control 
and Scan. The first one provides a sinusoidal signal to maintain 
the oscillator in a chaotic regime. The second one provides a suit-
able rectangular pulse with an adjustable phase shift with respect 
to the driving signal and applied to the cubic nonlinearity of the 
oscillator. The last block (Scan), triggered by the first two, gener-
ates two signals, that is, a linear ramp Rφ for a phase variation of 
2π and a 32 level staircase signal Sε (constant in amplitude during 
one phase sweep) allowing us to perform a sweeping of the pertur-
bation strength ε. The x and y signals from the Duffing oscillator 
together with the phase-ramp and x + Sε signal are monitored on 
a four trace oscilloscope.

In our experiment, phase control has been applied on the cubic 
term of the Duffing oscillator according to the following equations:

ẋ = y (1)

ẏ = −γ y + x + (
1 + f (t)

)
x3 + A cos(2π fdt) (2)

where γ = 0.25 is the damping constant, A = 0.41 is the ampli-
tude of the sinusoidal driving signal with frequency fd and the 
pulsed control perturbation is a square wave of period T = 1/ fc

and amplitude ε, so that f (t) = ε for t = [−b/2, b/2] and 0 during 
the rest of the period as shown in Fig. 2. The parameter b is re-
lated to the duty cycle D of the square wave through the relation 
D = b/T . A relative phase φ of the pulsed perturbation f (t + φ)

Fig. 2. Periodic perturbation f (t) of period T = 1/ fc representing a rectangular 
pulse of width b and height ε. The duty cycle is defined as D = b/T . The phase 
difference is defined by considering the maximum of the sinusoidal signal and the 
midpoint of the pulsed perturbation.

with respect to the driving can be achieved by selecting the fre-
quency of the control signal as fc = fd + 1/Tsw where Tsw is the 
sweeping phase period during which a phase variation of 2π oc-
curs. In the experiment fd = 1592.500 Hz and Tsw = 2 s.

Using the sweeping technique for the phase φ and relative per-
turbation strength ε described above it is possible to obtain the 
stability domains directly on a digital scope (Tektronix TDS7104). 
In Fig. 3 three stability diagrams are reported for different values 
of the duty cycle together with the x–y representation of the two 
stabilized attractors (two period two solutions around the fixed 
points at x = ±1) and a not stabilized chaotic attractor. Hence, we 
can conclude that this type of periodic pulsed perturbation can 
also produce regimes of periodic dynamics. In these representa-
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