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We present two improved quasi-continuous models of dense, strictly anharmonic chains. The direct ex-
pansion which includes the leading effect due to lattice dispersion, results in a Boussinesq-type PDE with 
a compacton as its basic solitary mode. Without increasing its complexity we improve the model by in-
cluding additional terms in the expanded interparticle potential with the resulting compacton having 
a milder singularity at its edges. A particular care is applied to the Hertz potential due to its non-
analyticity. Since, however, the PDEs of both the basic and the improved model are ill posed, they are 
unsuitable for a study of chains dynamics. Using the bond length as a state variable we manipulate its 
dispersion and derive a well posed fourth order PDE.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

A wide variety of physical systems are described by anharmonic 
lattices that on the macroscopic length-scale involve many unit 
cells [1] and thus in a first approximation are modeled using the 
continuum limit given in terms of partial differential equation(s) 
(PDE), with the discrete effects being completely washed away. 
Since, however, with few notable exceptions [7], the continuum 
limit leads to gradients catastrophe, the leading effect due to the 
discreteness was retained to yield a quasi-continuum PDE descrip-
tion of the lattice. The resulting solitary mode – the compacton [2]
– is an example of energy-storing, essentially nonlinear entity and 
is both of fundamental importance and of longstanding interest [1,
3–5,11]. Note that although, in principle, lattices governed by New-
ton’s laws immediately spread any information posed over a finite 
domain, the purely anharmonic interparticle interaction creates a 
genuine screening effect beyond which there is no measurable ex-
citation. In fact the quasi-continuum limit correctly predicts the 
main span of the discreton – the solitary solution of the anhar-
monic chain, which decays at a doubly exponential rate.

In spite of the desired features of the compacton, the underly-
ing PDE model hardly solves our quest for an analytically accessible 
model to study interactions on the lattice. For not only is the ex-
pansion not asymptotic and its utility unknown a priori, but the 
PDE itself is ill posed (occasionally referred to as a bad-Boussinesq 
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Equation). Its main use was to extract an approximate shape of the 
underlying compacton to be used as an input in the original lattice.

Yet the fundamental importance of the dynamics on the lattice 
and, apart from few exceptions, our inability to analyze it, makes it 
highly desirable to derive a usable model. Note that the asymptotic 
procedure devised by Kruskal which resulted in the rebirth of the 
KdV, is applicable only to weakly anharmonic lattices. With these 
issues in mind we reexamine a class of purely and almost purely 
anharmonic lattices and demonstrate how a judicious use of the 
expanded interparticle potential and the discreteness begets equa-
tions with compactons which have an improved level of regularity 
and provide a better rendition of their discrete antecedents. How-
ever, to overcome the ill-posedness of the PDE models based on a 
direct expansion, we adopt another maneuver which begets a well 
posed fourth order PDE (capable of handling two sided propaga-
tion and head on collisions) which is then optimized for the best 
L1 fit of its solitary waves with their discrete antecedents. This ap-
proach has two main drawbacks, it is limited to 1-D chains and 
the tails decay at the conventional exponential rate missing the 
screening effect of their discrete antecedents.

In passing we stress again that our goal is not to duplicate the 
discrete profile of traveling waves (an exact solution profile can 
be computed following [13], see also the Appendix) but to derive 
a better PDE model of lattices dynamics which hopefully will en-
able a better handle on lattices dynamics. In fact with few notable 
exceptions the dynamics of nonlinear dense chains is beyond our 
ability to analyze it and apart from brute force simulation of the 
lattice, modelization via a PDE seems at this time to be the only 
tool available to us.
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2. Equations of motion and PDE approximation

Consider the Hamiltonian

Hdisc = h

{
N∑

n=−N

ρ ẏ2
n

2
+ P

(
yn+1−yn

h

)}
(1)

describing a chain of 2N + 1 particles of equal density ρ = m/h, 
equal spatial separation h and P being the interaction potential.

The equations of motion are

ÿn = 1
h

[
P ′ ( yn+1−yn

h

)
− P ′ ( yn−yn−1

h

)]
(2)

or for un = yn−yn−1
h

ün = 1

h2

[
P ′ (un+1) − 2P ′ (un) + P ′ (un−1)

]
. (3)

To approximate by a continuum we fix the total length L = 2Nh
while letting h ↓ 0 (and hence N ↑ ∞) which yields the continuum 
limit

Hcont =
∫ {

ρ y2
t

2
+ P (yx)

}
dx. (4)

We eliminate ρ by rescaling t yielding a nonlinear wave equa-
tion

ytt = ∂
∂x P ′ (yx) , P ′(S) ≥ 0. (5)

In the strict continuum limit not only do the solitary waves 
observed on a lattice disappear but, as is well known, for any rea-
sonable initial excitation, the second derivatives of solutions may 
become infinite in a finite time for it is the dispersion due to the 
discrete lattice which prevents this blow-up, hence its singular effect 
on the dynamics. The nonlinear spatial gradients are a major change 
from the linear wave equation; for now we are in a realm typical 
for quasilinear wave equations.

So the issue facing us is to construct an equation which incor-
porates the discrete effects in an adequate manner. However, since 
the problem is essentially nonlinear which amounts to saying that 
it has no phonons, there is no weakly nonlinear regime and an 
asymptotic expansion associated with it. With that in mind, we 
expand the potential P

(
yn+1−yn

h

)
in h (see Eq. (10)). Keeping the 

leading order correction and assuming P ′′(s) ≥ 0 and smooth we 
get

ytt = ∂
∂x P ′ (yx) + h2∂

12∂x

[√
P ′′ (yx)

∂
∂x

√
P ′′ (yx)yxx

]
+O(h4). (6)

Define u = yx , β = h2/12, differentiate once and rescale

(x, t) = (
√

βz,
√

βτ) (7)

to obtain

uττ = ∂2

∂z2 P ′ (u) + ∂2

∂z2

[√
P ′′ (u) ∂

∂z

√
P ′′ (u)uz

]
. (8)

Unfortunately, Eq. (8) has two flaws

1) It is ill posed.
2) The expansion leading to Eq. (8) is not asymptotic.

The first feature is well known and can be deduced either by in-
specting the extended Hamiltonian

Hqc =
∫ {

ρ y2
t

2
+ P (yx) − h2

24
P ′′(yx)(yxx)

2

}
dx (9)

which unlike its discrete antecedent is no longer bounded from 
below, or by inspection of the linearized dispersion. Actually this 
fact is by now well known, and for P ′′(s) ∼ const. the resulting 
equation of motion is referred to as the “bad” Boussinesq equa-
tion [14,15]. Originally it has already emerged in the very first 
analytical treatment of the FPU problem by Kruskal wherein P
was a cubic polynomial and the nonlinearity was assumed to be 
weak. This resulted in P ′′ ∼ const. rendering the leading fourth or-
der term linear. Kruskal circumvented the ill-posedness by deriving 
the one sided KdV equation as a leading asymptotic approximation 
of the weakly nonlinear regime. However, surprisingly enough, in 
the present genuinely nonlinear case there is no small parame-
ter. In fact, the scaling which eliminates h in (8) eliminates h in 
all higher order terms of the expansion as well! The size of h is 
thus irrelevant and the problem has no genuinely small param-
eter. The termination of the expansion at any level beyond the 
strict continuum, as done for example in Eq. (6), can be judged 
only a posteriori according to its utility in describing the sought 
after phenomena. That being the case, one may turn things around 
and rather than to terminate the expansion at a given power of h, 
to terminate it at a given level of complexity, which in the present 
context will mean that no derivatives of order higher than the sec-
ond will be kept in the Hamiltonian. Consequently, the resulting 
equation of motion shall have no derivatives of order higher than 
fourth. To carry out this program we expand the potential. Integra-
tion by parts and elimination of null divergences begets

P
(

yn+1−yn
h

)
⇒ P (yx) +

+ a2h2 P ′′(yxx)
2 + a4h4 P (4)(yxx)

4 + a6h6 P (6)(yxx)
6 + ...

+ b2h4 P ′′(y3x)
2 + b4h8 P (4)(y3x)

4 + b6h12 P (6)(y3x)
6 + ...

+ c2h6 P ′′(y4x)
2 + ...

+ ... (10)

where a2 = −1/24, a4 = −1/(10 · 242), b2 = 1/6!, etc. Clearly this 
expansion assumes an analytic P . In the following we will present 
two concrete examples: one where this assumption is satisfied and 
another where it is not [6] and further measures should be taken. 
If P is a polynomial of order 2K, P (2K+1) = 0 and each row ter-
minates after K terms. First row terms render a fourth order term 
in the PDE, the second row begets a sixth order term, and so on. 
To keep complexity in check we shall not venture beyond a fourth 
order PDE, which amounts to using only the first row in the ex-
pansion of P . First, let us define

P2m
.= P (yx)

(2m) and ã2m
.= (2m − 1)a2m.

Thus

P
(

yn+1−yn
h

)∼= P (yx) +
∑
m=1

ã2mh2m

2m − 1
P2m(yxx)

2m. (11)

2m

{
P

2m−1
2m

2m (yxx)
2m−2 ∂

∂x

(
yxx P

1
2m
2m

)}

= 1

yxx

∂
∂x

[
(yxx)

2m P2m

]
(12)

which enables to represent the resulting equation of motion in the 
form

ytt = ∂
∂x P ′ (yx) − ∂

∂x

1

yxx

∂
∂x

∑
2m

ã2mh2m
[
(yxx)

2m P2m

]
. (13)

Rescaling à la (7), we have in terms of u = yx
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