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We study formation of patterns in reaction processes with a logarithmic-diffusion: ut = (ln u)xx + R(u). 
For the generic R = u(1 − u) case the problem of travelling waves, TW, is mapped into a linear one 
with the propagation speed λ selected by a boundary condition, b.c. at the far away upstream. Dirichlet 
b.c. relaxes the process into a steady state, whereas convective b.c. ux + hu = 0, leads the system into a 
heating (cooling) TW for h < 1 (1 < h) or, if h = 1, into an equilibrium. We derive explicit solutions of 
symmetrically expanding waves and of formations which collapse in a finite time. Both are shown to be 
attractors of classes of initial excitations. For a bi-stable reaction R = −u(α − u)(1 − u) we show that for 
α < 1/3 the system may evolve into a TW, an equilibrium, an expanding formation or to collapse. The 
1/3 < α regime admits either a cooling TW or a collapse. Few other transport processes are outlined in 
the appendix.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In the last two decades logarithmic diffusion gained remark-
able notoriety due to a variety of applications in both physics and 
mathematics, see refs. [1,2] and references therein. An additional, 
not least important, argument in favor of further exploration of 
transport with a logarithmic diffusion is its remarkable level of 
solvability, a rare feature in nonlinear processes, which reveals rich 
and challenging phenomena. In the present work we shall unfold 
some of the properties due to coupling of logarithmic diffusion 
with reaction. In the next two sections we present the quadratic, 
Fisher-KPP, reaction whereas in sect. 4 we address the bistable 
case. In the appendix we extend the presented method to other 
reaction–diffusion processes. In particular we discuss formation of 
cavity due to radiation.

2. The Fisher-KPP reaction

We start with the classical Fisher-KPP reaction

ut = (ln u)xx + u(1 − u), x ∈ R (1)

with

u(−∞) = 1 and u(+∞) = 0. (2)

Unlike the standard Fisher-KPP case wherein precursor’s dynam-
ics is linear, the presented process is essentially nonlinear down to the 
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ground state. Moreover, if the wave’s precursor decays as u ∼ e−ax

then, unlike the classical case wherein the flux −ux ∼ e−ax , here 
flux −ux/u ∼ a and thus remains finite as x → ∞. This has a fun-
damental impact on the overall dynamics and may cause a com-
plete extinction of the process within a finite time [1].

With the classical KPP results in mind we turn to find Travelling 
Waves, TW, of (1)–(2). Let z = x − 2λt , then

2λ
du

dz
+ d2 ln u

dz2
+ u(1 − u) = 0. (3)

To solve Eq. (3) we introduce a map

dζ = udz or ζ =
z∫

−∞
u(η)dη, (4)

under which Eq. (3) becomes linear

u
[
2λu′ + u′′ − u + 1

] = 0, with a′ = da

dζ
, (5)

and the b.c.: u(ζ = −∞) = 1 and u(ζ = ζ0) = 0. Its solution, we 
may assume ζ0 = 0, is

u(ζ ) =
[

1 − eγ ζ
]
+, where λ = 1 − γ 2

2γ
, (6)

or, since 0 < γ for the solution to stay bounded, γ −1=λ+√
1+λ2. 

In z coordinates we have

u(z) = 1

1 + eγ z
. (7)
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Fig. 1. The initial kink u(x, 0) = 1/(1 + ex/2) converges to the steady state of Eq. (1)
with h = 1. Note that everywhere but in Fig. 8 convective b.c. were used.

Fig. 2. The initial kink u(x, 0) = 1/(1 +ex/4) converges to a heating TW with λ = 1/2
and h = 1/2. (For interpretation of the references to color in this figure, the reader 
is referred to the web version of this article.)

Speed selection. So far the speed λ is arbitrary and may take 
both positive and negative values, with the latter corresponding to a 
cooling wave receding to the left. The later being a novel feature 
of the logarithmic diffusion. However, with the flux being finite at 
+∞, to assure uniqueness of the solution one has to be more spe-
cific about the action there, which is to say that one has to append 
the problem with an additional boundary condition upstream. The 
specific form of the flux in the present problem makes it natural 
to impose

ux + hu = 0 at x = ∞, (8)

which uniquely relates the convection coefficient h with the prop-
agation speed

λ = 1 − h2

2h
. (9)

In particular, the choice h = 1 begets a steady state

u(x) = 1

1 + ex+x∗ , x∗ = const., (10)

which means that when h = 1 heat production within the domain 
is balanced exactly by heat removed at infinity. Fig. 1 describes a 
typical convergence of an initial kink-like excitation into an equi-
librium. Taking h < 1 reduces the amount of heat which leaves at 
infinity. The excess of the heat generated in the domain induces a 
heating wave propagating to the right and thus λ > 0 (see Fig. 2
where the chosen h = 1/2 induces a heat wave with λ = 3/4). 
When 1 < h more heat leaves the domain than generated within. 

Fig. 3. The initial kink u(x, 0) = 1/(1 + ex/2) converges to a receding cooling TW of 
Eq. (1) with λ = −1/2 and h = (1 + √

5)/2. (For interpretation of the references to 
color in this figure, the reader is referred to the web version of this article.)

This induces a cooling wave receding to the left, i.e., λ < 0. Fig. 3
displays such scenario.

Alternatively, one may prescribe u at a finite distance L: u(L) =
U0 < 1. Now only stationary states (10) are admissible with x∗ re-
lated to U0 and L via

x∗ = ln(
1

U0
− 1) − L. (11)

Note the flux at x = L

−ux

u
|x=L = 1

1 + e−L
(12)

and it attains its limiting value 1 for L >> 1. Very much as in 
Fig. 1, the stationary state with Dirichlet boundary condition im-
posed at L is an attractor: initial profiles located above (below) 
the equilibrium propagate to the right (left) before settling into a 
steady-state (not shown).

3. Expanding waves

We now explore a wider family of solutions which also provides 
an alternative path to the TW solutions (for an application to other 
transport equations see the Appendix). Let v = 1/u, then in terms 
of v Eq. (1) reads

vt = v vxx − v2
x + ω2(1 − v), x ∈ R, (13)

where ω was added for a better trace of reaction’s impact. We seek 
solution in the form

v(x, t) = A(t) + B(t) f (x) (14)

which satisfies

Ȧ − ω2(1 − A) = −(Ḃ + ω2 B) f + AB f ′′ + B2[Q ( f )] (15)

and Q ( f ) .= f f ′′ − f ′ 2. We constrain Q ( f ) to satisfy

f f ′′ − f ′ 2 = α0 + α1 f , α0,α1 consts. (16)

Further developments depend on α0 and α1.

1) Let α0 = α1 = 0, then f (x) = exp(γ x). Solving for A and B
we find for both γ and the solution an ω 	= 1 extension of Eqs. (6)
and (7).

2) Let α0 = 0 and α1 = −2. Then f (x) = x2 and thus

u(x, t) = 1

A(t) + B(t)x2
, (17)

with A(t) found solving
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