Physics Letters A 381 (2017) 1081-1086

www.elsevier.com/locate/pla

Contents lists available at ScienceDirect

Physics Letters A

PHYSICS LETTERS A

Approximate analytic solutions to coupled nonlinear Dirac equations

Avinash Khare?, Fred Cooper b.cAvadh Saxena ©*

@ Physics Department, Savitribai Phule Pune University, Pune 411007, India
b Santa Fe Institute, Santa Fe, NM 87501, USA

@ CrossMark

€ Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

ARTICLE INFO ABSTRACT

Article history:

Received 22 March 2016

Received in revised form 7 December 2016
Accepted 10 January 2017

Available online 30 January 2017
Communicated by A.P. Fordy

Keywords:

Nonlinear Dirac equation
Scalar and vector interactions
Conservation laws

Solitons

We consider the coupled nonlinear Dirac equations (NLDEs) in 1 4+ 1 dimensions with scalar-scalar
2 _ 2 _ - -
self-interactions ‘%1(1,01#)2 + g72(¢¢)2 + g%(x/up)(¢¢) as well as vector-vector interactions of the form

2 _ - 2 _ - - -

L@@y ) + 5 @yvud) @y e) + gi(hyuv)($yF¢). Writing the two components of the
assumed rest frame solution of the coupled NLDE equations in the form v = e i®1t{R, cosh, Ry sinb)},
¢ = e 2L{R, cos 1, Ry sinn}, and assuming that 6(x), n(x) have the same functional form they had when
g3 =0, which is an approximation consistent with the conservation laws, we then find approximate
analytic solutions for R;(x) which are valid for small values of gZ/g3 and g%/g2. In the nonrelativistic
limit we show that both of these coupled models go over to the same coupled nonlinear Schrodinger
equation for which we obtain two exact pulse solutions vanishing at x — +oo.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The nonlinear Dirac (NLD) equation in 1 + 1 dimensions [1]
has a long history and has emerged as a useful model in many
physical systems such as extended particles [2-4], the gap solitons
in nonlinear optics [5], light solitons in waveguide arrays and ex-
perimental realization of an optical analog for relativistic quantum
mechanics [6-8], Bose-Einstein condensates in honeycomb optical
lattices [9], phenomenological models of quantum chromodynam-
ics [10], as well as matter influencing the evolution of the universe
in cosmology [11]. Further, the multi-component BEC order param-
eter has an exact spinor structure and serves as the bosonic analog
to the relativistic electrons in graphene. To maintain the Lorentz
invariance of the NLD equation, the self-interaction Lagrangian is
built using the bilinear covariants. Of special interest are scalar
bilinear covariant and vector bilinear covariant which have partic-
ularly attracted a lot of attention.

Classical solutions of nonlinear field equations have a long his-
tory as a model of extended particles [12]. In 1970, Soler proposed
that the self-interacting 4-Fermi theory was an interesting model
for extended fermions. Later, Strauss and Vasquez [13] were able to
study the stability of this model under dilatation and found the do-
main of stability for the Soler solutions. Solitary waves in the 1+1
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dimensional nonlinear Dirac equation have been studied [14,15] in
the past in case the nonlinearity parameter k = 1, i.e. the massive
Gross-Neveu [16] (with N =1, i.e. just one localized fermion) and
the massive Thirring [17] models. In those studies it was found
that these equations have solitary wave solutions for both scalar-
scalar (S-S) and vector-vector (V-V) interactions. The interaction
between solitary waves of different initial charge was studied in
detail for the S-S case in the work of Alvarez and Carreras [18] by
Lorentz boosting the static solutions and allowing them to scatter.

In a previous paper [19] we extended the work of these pre-
ceding authors to the case where the nonlinearity was taken to
an arbitrary power « for both the scalar-scalar and vector-vector
couplings and were able to find solitary wave solutions for an ar-
bitrary nonlinearity parameter k. In this paper we will extend the
previous models in a new direction by looking for solitary wave
solutions to the problem of two coupled NLDEs and considering
the scalar-scalar coupling as well as the vector-vector coupling be-
tween the two fields. That is, we assume the interaction Lagrangian

has the form g;(&x/f)z + g2—§(¢_7¢>)2 + g2(Y¥)(¢¢) for the scalar-
sgalar interaction and f%r the vector-vector interaction of the form
TV + Z@rud) @y e) + gy ) @y re).
Here we concern ourselves solely with the question of the ex-
istence of approximate analytic solutions to these coupled NLDEs
in 1+ 1 dimension which reduce to the usual exact soliton solu-
tions of the NLDE when the coupling between fields g3 is set to
zero. Of course, there is a huge related literature on solving the
related 3 4+ 1 dimensional two-body Dirac equations that are used
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for phenomenologically understanding meson spectroscopy as well
as the electromagnetic spectroscopy of the positronium system.
A good summary of this approach is found in the work of Crater,
Becker, Wong and Van Alstine [20]. Our present paper, however, is
only concerned with exploring the existence of bound state solu-
tions of the two coupled 1+ 1 dimensional NLDEs. We note that
about four decades ago coupled NLD equations in 1+ 1 dimen-
sions were considered formally [21] but no explicit solutions were
obtained.

Our strategy is to write the components of the two cou-
pled nonlinear Dirac equations in rest frame solitary wave form,
namely v = e '®11{R; cos 6, Ry sind}, ¢ = e '®2L{R, cosn, Ry sinn)
and then assume that the conservation law for linear momentum
is satisfied independently for i = 1, 2. This assumption is equiva-
lent to saying that 6(x), n(x) have the same functional form they
had when g3 = 0. Once one makes that assumption we obtain an
analytic expression for R;(x) which we then show approximately
solves the differential equation for R;(x). The one situation which
restricts the validity of this solution occurs in the scalar-scalar
interaction case when one of the solitary wave solutions (when
g3 =0) is of a double humped variety. In that case the solution is
valid only when the dimensionless coupling constants g%/g% and
g% /g% are < 1/100. Otherwise the approximate analytic solutions
we have found seem to be numerically accurate in both the scalar-
scalar as well as the vector-vector coupled NLD equation as long
as the two dimensionless constants are < 1/10.

2. Scalar-scalar interactions

We are interested in solitary wave solutions of the coupled non-
linear Dirac equations (NLDEs) given by

(y" o, —m)Y + gL W)Y + g2(dd)y =0, (21)
(iy"a, —m2)e + g35(dp)p + g5 (Y =0. (2.2)

We can eliminate one of the coupling constants by rescaling the
fields, that is, if we let ¥ — /g1, ¢ — ¢/g2, so that there are
two independent dimensionless coupling constants

25, =285/85. g, =2g5/8i. (23)

as we will discover later. The field equations can be derived from
the Lagrangian

2
L=y 8, —moy + L Gy)?

2
. g5 - - -

+ Gy o —m)¢ + ZHG9)’ + S WV)P¢)

=y (iy" o, —mn)y + ¢y oy —m)¢ + Lint. (2.4)
We notice the Lagrangian is symmetric under the interchange
v — ¢, my — my and g1 — go.

We next choose the following representation of the y matri-
ces:

yl=o03, iyi=o03, (2.5)

where the o; are the usual Pauli spin matrices.
In the rest frame we assume that the two components of the
solutions can be written as

00=( g ) =men (G085 )
P = ( f)((’;)) ) 72 = Ry(x) ( o Zg)) ) e it (2.6)

In the absence of interactions (g3 = 0), the solutions are of two
types [19]. When 1 > w/m > w./m then the solutions are single

humped as they are always in the case of vector-vector inter-
actions discussed below. However for the case 1 > w./m > w/m
the solutions are double humped and in that regime if the solu-
tions when g3 =0 are of two different types, then we will find
the approximate solutions we obtain are only valid for very small
g%i < 1/100. In component form these two coupled NLDEs can be
written as

OxA + (m1 + w1)B — g7 (A* — B*)B — g3(C* — D*)B =0,
B + (my — w1)A — g§(A® — B>)A — g5(C* — D*)A=0,
0xC + (mz + @)D — g5(C* — D*)D — g5(A* — B)D =0,
3D + (M3 — w)C — g3(C? — D*)C — g2(A> = B C=0. (2.7)

These are symmetric under the interchange {A, B} — {C, D},
my; — my, w1 — wy and g1 — g». These four equations can also
be written if we let y; = R,.Z(x) as:

dyi1 _ . 2 9 2 .

ke 2[g7y7(cos20) + g3y1y2(cos2n) — y1my]sin 20,

dy> :

= 2[g2y5(cos2n) + 283 y1y2(cos 20) — yomy]sin2n, (2.8)
and

4 _ 2 220 + g2 26 cos2n — 20

ix = g1Yy1cos + g3¥2€0s26 cos2n —mq cos 20 + w1,

dn _ 2 2+ g2 26 cos 21 — 20+ (2.9)
ix = g5Y2C0s” 2N + g5Y1C0S260 cos2n — my cos2n + wy. (2.

We can rewrite these equations in terms of the two dimensionless
coupling constants by scaling y; — y1/g$, Yo — yz/gg.

2.1. Conservation laws

We have that energy and momentum are conserved, namely

9, TH =0, (2.10)
where the energy-momentum tensor is defined as
Tuv =19 Yudv i +i¢Yudvd — guv L, (211)

and L is given by Eq. (2.4). From total momentum conservation,
we find, just like for the single field NLDE, that for a solution that
vanishes at +co we have

Tio =YYy + w2019 =0 (212)
and also
Ti1 =o'y —mUy + 020'¢ —made + Lie =0.  (213)

Multiplying Eq. (2.1) on the left by ¢ and Eq. (2.2) on the left by ¢
and adding those two equations and then using Eq. (2.13) to elim-
inate the interaction terms of L;j,;, we then obtain the equation:

o1 —mig Y +iv iy + w29'o — magd +idyr101¢ =0,
(214)

which becomes using our ansatz

5 (dO 2 (dn
R? a-|-a)1—m1c0529 +R3 a-l-wz—mzcoszﬂ =0.

(2.15)

One also has that energy is conserved. The energy density is
given by

Too(X) =M1y +magp = miR? cos26 +myR3cos2n, (2.16)
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