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Landauer–Buttiker formalism with the assumption of semi-infinite electrodes as reservoirs has been the 
standard approach in modeling steady electron transport through nanoscale devices. However, modeling 
dynamic electron transport properties, especially nanoscale capacitance, is a challenging problem because 
of dynamic contributions from electrodes, which is neglectable in modeling macroscopic capacitance 
and mesoscopic conductance. We implement a self-consistent quantum tight-binding model to calculate 
capacitance of a nano-gap system consisting of an electrode capacitance C ′ and an effective capacitance 
Cd of the middle device. From the calculations on a nano-gap made of carbon nanotube with a buckyball 
therein, we show that when the electrode length increases, the electrode capacitance C ′ moves up 
while the effective capacitance Cd converges to a value which is much smaller than the electrode 
capacitance C ′. Our results reveal the importance of electrodes in modeling nanoscale ac circuits, and indicate 
that the concepts of semi-infinite electrodes and reservoirs well-accepted in the steady electron transport theory 
may be not applicable in modeling dynamic transport properties.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The success of quantum mechanics can be reflected from the 
development of quantum chemistry and solid state physics. Quan-
tum chemistry uses quantum mechanics to study finite structures 
like atoms and molecules, while solid state physics applies quan-
tum mechanics to (infinite) bulk materials under periodic bound-
ary conditions. For electronic structure calculations based on the 
density functional theory [1,2], commercial and academic software 
packages have been developed and widely used in both quan-
tum chemistry and solid state physics. The development of na-
noelectronics, however, introduces a new structure [3,4] consist-
ing of two separated electrodes and a finite device in between 
[see Fig. 1(a)]. The two electrodes are usually bulk materials and 
assumed as semi-infinite. Obviously, this transport system is in-
finite but lacks periodicity. Both the methods from the quantum 
chemistry (for finite structures) and solid state physics (for bulk 
materials with a lattice periodicity) cannot be used in this new 
structure. It was Landauer and Buttiker, who established a stan-
dard model for nanoscale direct-current (dc) transport [5]. In their 
model each electrode is viewed as a reservoir with a given chem-
ical potential, which is unaffected by the central device and the 
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transport current. The difference between the chemical potentials 
in two electrodes is viewed as the bias voltage. The two-terminal 
conductance is then determined by the transmission of electrons 
from one electrode to the other.

Recently, this two-terminal transport system was proposed to 
detect the DNA sequence [6], where the middle device is taken as 
different DNA nucleotides [adenine (A), cytosine (C), guanine (G), 
and thymine (T)]. This proposal relies on the nucleotide-resolved 
conductance, which, however, depends exponentially on the effec-
tive distances between the nucleotide and electrodes [7]. To wash 
out this distance dependence of the conductance [8], thousands of 
measurements and a good statistics might be needed. As an alter-
native proposal on transport-based DNA sequencing, alternative-
current (ac) capacitance measurement [9] may provide a better 
signal/noise ratio than the dc conductance measurement. The rea-
son is that the capacitance results mainly from direct Coulomb in-
teraction between the nucleotide and electrodes and is thus rather 
less sensitive to the nucleotide–electrode distance than the dc con-
ductance.

It is believed that ac transport would provide faster and more 
energy-efficient nanoelectronic devices. Many concepts and algo-
rithms on dc conductance of nanoscale structures have been gener-
alized to calculate dynamic conductance [10–13] and capacitances 
[14–16]. In these models the transport properties due to the mid-
dle device are focused and the electrodes are usually simplified by 
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Fig. 1. (Color online.) (a) and (b) A typical two-terminal transport system consisting 
of two separated electrodes and a device on the nanoscale. The red arrows illustrate 
space distributions of (a) the steady direct currents and (b) the dynamic alternating 
currents. (c) and (d) A nano-gap made of carbon nanotubes, with and without a 
buckyball in between.

taking the wide-band limit. However, ac transport is distinct from 
dc transport even for a simple two-terminal system [see Figs. 1(a) 
and 1(b)]. In Fig. 1(a), the steady dc currents through any cross-
area of the two electrodes are the same. This two-terminal current 
could be strongly affected by the middle device since it has to go 
through the middle device due to the current conservation. Thus 
the I–V curves measured in electrodes may reveal some properties 
of the middle device. In contrast, an ac current flowing back and 
forth in electrodes could bypass the middle device [Fig. 1(b)]. This 
indicates that the ac current amplitude in electrodes can be much 
bigger than that in the middle small device, for example, when 
the capacitance of the electrodes is much larger than that of the 
middle device. The dynamic I–V characters measured in electrodes 
may be irrelevant to the middle device. When ac transport prop-
erties of nanoscale circuits are concerned, we should notice that 
the electrodes can contribute dominantly to the current and should be 
treated carefully. To extract the dynamic properties of the middle 
device from the transport measurements, it is necessary to remove 
properly the contribution from the electrodes.

To illustrate the role of electrodes in determining physical quan-
tities related to ac transport, in this work we calculate capacitances 
of a nano-gap system as shown in Fig. 1(b) and define effective ca-
pacitances for the nanoscale device therein. The capacitances of 
the electrodes and device will play an important role in determin-
ing dynamic current in ac transport, but will not affect steady cur-
rent in dc transport. The nano-gap system consists of two metallic 
electrodes at a distance of several nanometers. We adopt both a 
classical atomic charge model [17,18] and a quantum tight-binding 
model to calculate the static capacitance. For a nano-gap [shown in 
Figs. 1(c) and 1(d)] made of carbon nanotubes (CNTs), our calcula-
tions based on both models show that the inclusion of a nanoscale 
device like a buckyball (C60) brings only a tiny change on the ca-
pacitance of the system. This indicates that when connecting in a 
nanoscale circuit, it is the electrodes rather than the middle device 
will contribute mainly to dynamic currents.

2. Models on capacitances of nano-gap systems

To calculate the capacitance of a nano-gap system schematically 
shown in Fig. 1(c), for each electrode we take a finite length NC

which starts from the electrode’s terminal [19]. The length NC is 
in unit of the size of a unit cell of electrodes and will be gradually 
increased in calculations so that each electrode can approach the 
corresponding semi-infinite electrode. The whole system H 2E+D in 
calculations is finite and consisting of two finite electrodes and a 
middle device. We assign a positive charge +Q on the left elec-
trode and a negative charge −Q on the right one. The potential 
difference �V between the two electrodes can be calculated and 
the capacitance of this finite system is defined as C = Q /�V . 
For the finite system H 2E including only the two electrodes, as 
shown in Fig. 1(d), we can similarly calculate its capacitance from 
C ′ = Q /�V ′ . Then the contribution from the middle device can be 
calculated by Cd = C − C ′ and defined as the effective capacitance 
of the device [20]. As shown below, the value of Cd at large length 
NC is a constant and thus can be viewed as an intrinsic capaci-
tance contribution of the middle device.

To calculate the potential difference �V , here we adopt a self-
consistent tight-binding model. The finite system H 2E+D can be 
described by the Hamiltonian

H =
N∑

i=1

(Ei + V i)C+
i Ci −

∑
〈i, j〉

ti, jC
+
i C j (1)

Here N is the total number of atoms, Ci is the annihilation op-
erator of electrons on atom i, Ei and V i are the zero-field onsite 
energy and electric potential energy at atom i, and ti, j is the hop-
ping energy from atom j to atom i. Note that there is no hopping 
between atoms belonging to different parts (left electrode, right 
electrode, and device). We assume that the tight-binding parame-
ters ti, j and Ei depend only on the materials. The electric potential 
energies V i are solved in a self-consistent manner. For the ini-
tial guess values of electric potential energies, we use the results 
from classical calculations as described in the classical model be-
low. We then diagonalize the Hamiltonian (1) to yield a set of 
energy levels and corresponding wave functions. For each elec-
trode, the energy levels are occupied by electrons until reaching 
the assigned charge. From the wave functions of occupied energy 
levels, we can calculate the charge q j of each atom j for the 
whole system. The charge distribution of each atom is then ap-
proximated by a Gaussian distribution. The charge density ρ j(r) of 
atom j is ρ(r; q j) = q j

π3/2 R3 exp[−(
|r−r j |

R )2], where r j is the posi-
tion of the atom j and R is the width of the distributions. Then a 
new set of values of the electric potential energies can be calcu-
lated by V i = −e(

∑N
j=1 Tijq j + χi), and be used as the new guess 

V i in the Hamiltonian (1). Here e is the proton’s charge, Tij =
erf(ri j/

√
2R)/(4πε0ri j), and χi is the electron affinity of atom i. 

This procedure is repeated until a self-consistent solution of elec-
tric potential energies V i is reached. Finally, one obtains the poten-
tial difference between the two electrodes �V = |εmaxL − εmaxR|/e, 
where εmaxL(εmaxR) is the energy of highest occupied energy levels 
in the left (right) electrode.

We have also present results from a classical model for compar-
ison. The classical charge q j of the atom j satisfies the following 
equations:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N∑
j=1

Tijq j + χi − V L = 0; i ∈ L

N∑
j=1

Tijq j + χi − V R = 0; i ∈ R

∑
j∈L

q j = +Q ;
∑
j∈R

q j = −Q ,
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