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To relate the motion of a quantum particle to the properties of the potential is a fundamental problem 
of physics, which is far from being solved. Can a medium with a potential which is neither periodic nor 
quasi-periodic be a conductor? That question seems to have been never addressed, despite being both 
interesting and having practical importance. Here we propose a new approach to the spectral problem 
of the one-dimensional Schrödinger operator with a bounded potential. We construct a wide class of 
potentials having a spectrum consisting of the positive semiaxis and finitely many bands on the negative 
semiaxis. These potentials, which we call primitive, are reflectionless for positive energy and in general 
are neither periodic nor quasi-periodic. Moreover, they can be stochastic, and yet allow ballistic transport, 
and thus describe one-dimensional ideal conductors. Primitive potentials also generate a new class of 
solutions of the KdV hierarchy. Stochastic primitive potentials describe integrable turbulence, which is 
important for hydrodynamics and nonlinear optics. We construct the potentials by numerically solving a 
system of singular integral equations. We hypothesize that finite-gap potentials are a subclass of primitive 
potentials, and prove this in the case of one-gap potentials.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Despite much work spanning almost 90 years, the evolution of 
a quantum particle in a one-dimensional bounded potential is far 
from being understood. Depending on the properties of the poten-
tial, there is a wide range of possibilities. Many random potentials 
(but not all, see [1]) display Anderson localization, meaning that 
the wave packet expands to a bounded size, and the particle does 
not move freely. In an opposite scenario the wave train propagates 
ballistically, and the particle can move to infinity in both directions 
(see [2]). This can happen, for example, in a periodic potential. 
A number of intermediate possibilities exist, for example the par-
ticle can diffuse to infinity, with the diffusion coefficient being a 
function of energy.

In this letter, we describe a large class of potentials that admit 
ballistic wave propagation. We give an effective analytic method 
for constructing such potentials and support this method with nu-
merical computations.

The character of the evolution of a wave train is determined by 
the spectral properties of the Schrödinger operator
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Lψ = (−∂2
x + u(x))ψ = Eψ, −∞ < x < ∞ (1)

A real number E belongs to the spectrum of L if (1) has one 
(non-degenerate) or two (doubly degenerate) linearly independent 
bounded solutions. The spectrum of a generic bounded potential 
can have a very complicated, fractal-like structure. Ballistic trans-
port is possible for energies lying in an allowed band, in other 
words if there is an open interval such that the spectrum is doubly 
degenerate at each point of the interval.

In what follows we only consider potentials whose spectrum 
has such a band structure, consisting of a union of intervals on 
which it is doubly degenerate, separated by forbidden gaps. Peri-
odic potentials, and certain quasi-periodic ones, have such a spec-
trum (see [3]). A generic periodic potential has infinitely many 
forbidden gaps, however, a dense subset of potentials has finitely 
many. Such finite-gap potentials play a fundamental role and can 
be explicitly described. A finite-gap potential is specified by choos-
ing the gap boundaries on the real axis, a point inside each gap, 
and a choice of sign at each point. This data determines a hyper-
elliptic Riemann surface and a divisor on it, and the potential is 
explicitly given by the Matveev–Its formula in terms of the asso-
ciated Riemann theta functions (see [4,5]). The resulting potential 
is quasi-periodic with k ≤ N periods, and periodic potentials are 
obtained by imposing N − 1 additional conditions.
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Until recently it was believed that the algebro-geometric N-gap 
potentials are the only ones whose spectrum has a band struc-
ture with N gaps. In this letter, we show that this is not the 
case, and we effectively construct a much wider class of poten-
tials that have such a spectrum. We call such potentials primitive. 
Unlike N-gap potentials, which are determined by finitely many 
parameters, primitive potentials are determined by an arbitrary 
continuous function. We hypothesize that all N-gap potentials are 
primitive, but prove this only for N = 1.

Unlike finite-gap potentials, primitive potentials are in general 
neither periodic nor quasi-periodic. Furthermore, numerical exper-
iments show that they can be quite disordered, though we believe 
that they are not entirely random and have a hidden long-range 
order. We do not compute their correlation functions analytically, 
but numerical experiments indicate that these potentials are sta-
tistically almost uniform.

We believe that primitive potentials will have wide-ranging ap-
plications in diverse areas of physics. Let u(x) be the potential of a 
one-dimensional medium consisting of irregularly spaced ions and 
a sea of non-interacting electrons. If Anderson localization holds, 
then the medium is an ideal dielectric. It seems natural to assume 
that a medium can be a conductor only if the potential function is 
periodic or quasiperiodic. We show that this is not the case, and 
that a much wider class of one-dimensional conductors is possible. 
If the potential is primitive, and the Fermi level is in one of the al-
lowed bands, then such a medium is an ideal conductor, despite 
being non-periodic. This may help explain the conductivity of long 
non-periodic organic molecules, such as DNA.

Our results have important applications for a completely dif-
ferent area of physics. The Schrödinger equation is an auxiliary 
tool for integrating the Korteweg–de Vries (KdV) equation, which is 
one of the fundamental models of nonlinear wave dynamics. This 
procedure is known as the inverse spectral transform, or IST, dis-
covered in 1967 in [7]. Under the IST, the potential is assumed to 
be time-dependent, and it turns out that KdV evolution does not 
change the spectrum of the associated stationary Schrödinger op-
erator. Moreover, primitive potentials remain primitive. Hence, our 
method also constructs a new family of exact solutions of KdV, and 
the higher KdV hierarchy, which are bounded but non-vanishing as 
|x| → ∞. Computer simulations show that these solutions are quite 
irregular.

Integrable nonlinear wave equations, such as KdV, describe a 
number of important physical systems: waves on shallow water, 
nonlinear waves in optic fibers, and so on. All of these systems are 
in need of a statistical description. The first steps in such a theory, 
known as integrable turbulence [8], have already been made.

We note that, although this letter describes a somewhat com-
plicated mathematical theory, we state most propositions without 
proof, and we plan to publish them elsewhere. Our method also in-
cludes an intricate numerical algorithm, using multiscale accuracy, 
the details of which will also be published separately.

2. Primitive potentials

We give a construction of a wide class of potentials whose 
spectrum consists of the positive semiaxis and N allowed bands 
on the negative semiaxis.

Primitive potentials are the continuous limits of reflection-
less Bargmann potentials [9], which are also fixed-time slices of 
N-soliton solutions of the KdV hierarchy. We omit the details of 
this limiting transition and give a direct construction using the 
dressing method, following [10]. We consider a distribution T (k)

on the complex k-plane, which we call the dressing function, sat-
isfying the following conditions:

T (k) = −T (−k),

ˆ
|T (k)|dk ∧ dk < ∞, (2)

here and now on we assume integration over the entire complex 
plane unless explicitly specified otherwise. We consider the follow-
ing integral equation on a function χ(x, k) defined on the complex 
k-plane (in what follows we write T (k) and χ(x, k) without as-
suming either to be analytic):

χ(x,k) = 1 − 1

2π

ˆ
T (−q)χ(x,q)e−2iqx

k + q
dq ∧ dq, (3)

where χ(x,−k) = χ(x, k) and x is a parameter.
Suppose that the dressing function is such that the equation 

(3) has for all x in an interval (x1, x2) a unique solution satisfying 
χ → 1 as |k| → ∞. Then the function χ has the following asymp-
totic expansion:

χ(x,k) = 1 + iχ0(x)

k
+ · · ·

The function χ0(x) is real-valued by virtue of (2)–(3). Furthermore, 
χ(x, k) is a solution of the equation:

χxx − 2ikχx − u(x)χ = 0, u(x) = 2
d

dx
χ0(x),

and the function ψ = χeikx is a solution of the Schrödinger equa-
tion (1) with E = k2. This, of course, does not mean that E is a 
point of the spectrum. For this to hold, the following conditions 
need to be satisfied:

1. Equation (3) must have a solution all x, i.e. x1 = −∞ and x2 =
+∞. Otherwise, at the boundaries u(x) will have a singularity 
(generically a pole of order two).

2. The potential u(x) must be bounded for all x.
3. At least one solution of the Schrödinger equation must be 

bounded for all x.

The first two of these conditions impose strong restrictions on the 
dressing function T (k). We choose the dressing function in the 
following way. Let 0 < k1 < k2, and let R1(κ) and R2(κ) be two 
real-valued functions on [k1, k2], which we extend by zero to the 
entire real axis. Let k = kR + ikI , and define

T (k) = iδ(kR)[R1(kI ) − R2(−kI )], (4)

where δ(kR) is the one-dimensional Dirac delta function. The sym-
metry conditions from (2) follow. A function χ(x, k) satisfying (3)
with such a T (k) is analytic on the k-plane away from two cuts 
k1 < Im k < k2 and −k2 < Im k < −k1 on the imaginary axis. It 
has the following representation:

χ(x,k) = 1 + i

k2ˆ

k1

ϕ(x,q)e−qx

k − iq
dq + i

k2ˆ

k1

ψ(x,q)eqx

k + iq
dq. (5)

Substituting (4) and (5) into (3) gives a system of singular integral 
equations on ϕ and ψ . These equations are equivalent a vector 
Riemann–Hilbert problem. Denote 	(k) = [χ(k) χ(−k)]T , and let 
	+ and 	− be the right and left values of 	 on the cuts. Then the 
problem is

	+(iκ) = M(κ)	−(iκ), 	+(−iκ) = MT (κ)	−(−iκ) (6)

for κ ∈ [k1, k2], where the transition matrix is

M(x, κ) = 1

1 + R1 R2

[
1 − R1 R2 2iR1e−2κx

2iR2e2κx 1 − R1 R2

]

We claim that if R1 and R2 are non-negative functions satis-
fying the Hölder condition for some α > 0, then this Riemann–
Hilbert problem has a unique solution for all x with normalization 
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