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We study nonlinear response of a quantum Hall system in semiconductor-hetero-structures via third 
harmonic generation process and nonlinear Faraday effect. We demonstrate that Faraday rotation angle 
and third harmonic radiation intensity have a characteristic Hall plateaus feature. These nonlinear effects 
remain robust against the significant broadening of Landau levels. We predict realization of an experiment 
through the observation of the third harmonic signal and Faraday rotation angle, which are within the 
experimental feasibility.
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Integer quantum Hall effect (QHE) is remarkable phenomenon 
of two dimensional electron gas (2DEG) systems, in which the lon-
gitudinal resistance vanishes while the Hall resistance is quantized 
into plateaus [1]. The static QHE is the hallmark of dissipation-
less topological quantum transport [2] and despite its long history 
there is a continuing enormous amount of interest on this effect 
along various avenues. With the advent of new materials, such 
as graphene and topological insulators new regimes of QHE have 
been revealed [3,4]. While static properties of the integer QHE 
have been well investigated in the scope of linear response theory, 
the dynamic and nonlinear responses in the quantum Hall sys-
tem (QHS) in the high-frequency regime are not fully explored. In 
Ref. [5] considering the quantum dynamics of QHS exposed to an 
intense high-frequency electromagnetic wave, it is shown that the 
wave decreases the scattering-induced broadening of Landau lev-
els. Linear response of the QHS in the high-frequency regime has 
been theoretically examined in Ref. [6]. As was shown in Ref. [6]
the plateau structure in the QHS is retained, up to significant de-
gree of disorder, even in the THz regime, although the heights of 
the plateaus are no longer quantized. Then this effect has been 
confirmed experimentally in Ref. [7]. Thus, a problem remains as 
how QHS responded to a strong and high-frequency electromag-
netic wave fields, which is the purpose of the present study. In 
this case it is of interest to study generation of harmonics [8,9] at 
the interaction of a strong pump wave with the Landau quantized 
2DEG.

* Corresponding author.
E-mail address: gfmkrtchian@gmail.com (G.F. Mkrtchian).

In the QHS wave-particle interaction can be characterized by 
the dimensionless parameter χ = eE0lB/(h̄ω), which represents 
the work of the wave electric field E0 on the magnetic length 
lB = √

ch̄/(eB) (e is the elementary charge, h̄ is Planck’s con-
stant, c is the light speed in vacuum, and B is the magnetic field 
strength) in units of photon energy h̄ω. The linear response theory 
is valid at χ << 1. At χ ∼ 1 multiphoton effects become con-
siderable. In this paper we consider just multiphoton interaction 
regime and look for features in the harmonic spectra of the strong 
wave driven QHS. As a 2DEG system we consider GaAs/AlGaAs sin-
gle heterojunction. The time evolution of the considered system is 
found using a nonperturbative numerical approach, revealing that 
the generated in the QHS harmonics’ radiation intensity has a char-
acteristic Hall plateaus feature. The effect remains robust against a 
significant broadening of Landau levels and takes place for wide 
range of intensities and frequencies of a pump wave.

We begin our study with construction of the single-particle 
Hamiltonian which defines the quantum dynamics of considered 
QHS. The 2DEG is taken in the xy plane (z = 0) and a uniform 
static magnetic field is applied in the OZ direction. We consider 
an incoming electromagnetic radiation pulse E(t − z/c) propagat-
ing in the OZ direction and linearly polarized along the x axis. The 
incoming wave is assumed to be quasimonochromatic of carrier 
frequency ω and slowly varying envelope E0(t). For the 2DEG as 
realized in GaAs/AlGaAs we have uniform time-dependent electric 
field E(t) = E0(t) sinωt and the single-particle Hamiltonian of QHS 
reads:

Hs = h̄ωB

(̂
a†̂a + 1

2

)
+

[
elB E(t)√

2

(̂
b + îa

) + h.c.

]
. (1)
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Here ωB = eB/ (m∗c) is the cyclotron frequency, m∗ = 0.068me is 
the effective mass (me – the bare electron mass). For the interac-
tion Hamiltonian we use a length gauge describing the interaction 
by the potential energy. The ladder operators â and â† describe 
quantum cyclotron motion, while b̂ and b̂† correspond to guid-
ing center motion. These ladder operators satisfy the usual bosonic 
commutation relations [̂a, ̂a†] = 1 and [̂b, ̂b†] = 1. The single free 
particle Hamiltonian, that is the first term in Eq. (1) can be diag-
onalized analytically. The wave function and energy spectrum are 
given by:

|ψn,m〉 = |n,m〉, (2)

εn = h̄ωB

(
n + 1

2

)
. (3)

Here |n, m〉 = |n〉 ⊗ |m〉, with |n〉 and |m〉 being the harmonic 
oscillator wave functions. The eigenstates (2) are defined by the 
quantum numbers n, m = 0, 1.... Here n is the LL index. The LLs 
are degenerate upon second quantum number m with the degen-
eracy factor NB = S/2π l2B which equals the number of flux quanta 
threading the 2D surface S occupied by the 2DEG. The terms 
∼ âE(t) in the Hamiltonian (1) describe transitions between LLs, 
while the terms ∼ b̂E(t) describe transitions within the same LL. 
These transitions can be excluded from the consideration by the 
appropriate dressed states for the construction of the carrier quan-
tum field operators. Expanding the fermionic field operator

|�̂〉 =
∑
n,m

ân,m|ψ̃n,m〉 (4)

over the dressed states

|ψ̃n,m〉 = exp

⎡
⎣− i

h̄

elB√
2

t∫
0

E(t′)dt′ (̂b† + b̂
)⎤
⎦ |ψn,m〉, (5)

the Hamiltonian of the system in the second quantization formal-
ism

Ĥ = 〈
�̂

∣∣Hs
∣∣�̂〉

can be presented in the form:

Ĥ =
∞∑

n=0

NB−1∑
m=0

εn̂a+
n,mân,m +

∞∑
n,n′=0

NB−1∑
m=0

E(t)Dn,n′̂a+
n,mân′,m, (6)

where ̂a†
n,m and ̂an,m are, respectively, the creation and annihilation 

operators for a carrier in a LL state, and Dn,n′ is the dipole moment 
operator:

Dn,n′ = ielB√
2

[√
n − 1δn−1,n′ + √

nδn,n′−1

] h̄ωB

εn′ − εn
. (7)

Then we will pass to Heisenberg representation where operators 
obey the evolution equation

ih̄
∂ L̂

∂t
= [̂

L, Ĥ
]

and expectation values are determined by the initial density ma-
trix D̂: < L̂ > = Sp 

(
D̂ L̂

)
. In order to develop microscopic theory 

of the nonlinear interaction of the QHS with a strong radiation 
field, we need to solve the Liouville–von Neumann equation for 
the single-particle density matrix

ρ(n1,m1;n2,m2, t) = < â+
n2,m2

(t )̂an1,m1(t) > (8)

and for the initial state of the quasiparticles we assume an ideal 
Fermi gas in equilibrium:

ρ(n1,m1;n2,m2,0) = δn1,n2δm1,m2

1 + exp
(

εn1 −εF

T

) . (9)

Including in Eq. (9) quantity εF is the Fermi energy, T is the 
temperature in energy units. As is seen from the interaction 
term in the Hamiltonian (6) quantum number m is conserved: 
ρ(n1, m1; n2, m2, t) = ρn1,n2 (t) δm1,m2 . To include the effect of the 
LLs broadening we will assume homogeneous broadening of the 
LLs [10]. The latter can be incorporated into evolution equation for 
ρn1,n2 (t) by the damping term −i�n1,n2ρn1,n2 (t) and from Heisen-
berg equation one can obtain evolution equation for the reduced 
single-particle density matrix:

ih̄
∂ρn1,n2(t)

∂t
= [

εn1 − εn2

]
ρn1,n2(t) − i�n1,n2ρn1,n2 (t)

− E(t)
∑

n

[
Dn,n2ρn1,n(t) −Dn1,nρn,n2(t)

]
. (10)

For the damping matrix we take �n1,n2 = �
(
1 − δn1,n2

)
, where �

measures the LL broadening.
Solving Eq. (10) with the initial condition (9) one can reveal 

nonlinear response of the QHS to a strong radiation pulse. At that 
one can expect intense radiation of harmonics of the incoming 
wave-field in the result of the coherent transitions between LLs. 
The harmonics will be described by the additional generated fields 
E(g)

x,y . We assume that the generated fields are considerably smaller 
than the incoming field 

∣∣∣E(g)
x,y

∣∣∣ << |E|. In this case we do not need 
to solve self-consistent Maxwell’s wave equation with Heisenberg 
equations. To determine the electromagnetic field of harmonics we 
can solve Maxwell’s wave equation in the propagation direction 
with the given source term:

∂2 E(t)
x,y

∂z2
− 1

c2

∂2 E(t)
x,y

∂t2
= 4π

c2

∂Jx,y (t)

∂t
δ (z) . (11)

Here δ (z) is the Dirac delta function and Jx,y is the mean value 
of the surface current density operator:

Ĵx (t) = −2eh̄√
2lBm∗S

〈
�̂

∣∣ (â† + â
) ∣∣�̂〉

,

Ĵy (t) = −2eh̄

i
√

2lBm∗S
〈
�̂

∣∣ (â† − â
) ∣∣�̂〉

. (12)

With the help of Eqs. (4) and (8) the expectation value (12) of the 
total current in components can be written in the following form:

Jx (t) = j0

∑
n=0

√
n + 1Reρn,n+1 (t) ,

Jy (t) = − j0

∑
n=0

√
n + 1Imρn,n+1 (t) , (13)

where j0 = −√
2eh̄/ 

(
π l3Bm∗) (here we have taken into account the 

spin degeneracy factor). The solution to equation (11) reads

E(t)
x,y (t, z) = Ex,y (t − z/c)

− 2π

c

[
θ (z)Jx,y (t − z/c) + θ (−z)Jx,y (t + z/c)

]
, (14)

where θ (z) is the Heaviside step function with θ (z) = 1 for z ≥ 0
and zero elsewhere. The first term in Eq. (14) is the incoming 
wave. In the second line of Eq. (14), we see that after the en-
counter with the 2DEG two propagating waves are generated. One 
traveling in the propagation direction of the incoming pulse and 
one traveling in the opposite direction. The Heaviside functions 
ensure that the generated light propagates from the source lo-
cated at z = 0. We assume that the spectrum is measured at a 
fixed observation point in the forward propagation direction. For 
the generated field at z > 0 we have

E(g)
x,y (t − z/c) = −2π

c
Jx,y (t − z/c) . (15)
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