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We investigate a two-leg ladder topological superconductor system consisting of two parallel Kitaev 
chains with interchain coupling. It is found that either uniform or staggered fluxes threading through the 
ladder holes may change the ladder system from the BDI class in the Altland–Zirnbauer (AZ) classification 
to the D class. After explicitly calculating the topological Z and/or Z2 indices and from the evolution 
of Majorana zero energy states (MZES), we obtain the flux-dependent phase diagrams, and find that 
quantum phase transitions between topologically distinct phases characterized by different number of 
MZES may happen by simply tuning the flux, which could be realized experimentally in ultracold systems.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Recently, there has been a rapidly growing research on topo-
logical superconductors, partly because of their ability to host ex-
otic quasiparticles known as Majorana fermions [1–4]. Majorana 
fermions are their own anti-particles and obey non-abelian ex-
change statistics, making them quite promising for fault-tolerant 
quantum computation. Up to now, various theoretical schemes 
have been proposed to realize condensed matter versions of Majo-
rana fermions, such as the ν = 5/2 fractional quantum Hall effect 
states [5], a strong topological insulator proximity-coupled to an 
ordinary s-wave superconductor [6], one-dimensional (1D) conven-
tional semiconducting wires [7,8], and cold atomic gases [9,10].

Quasi-1D quantum wire systems have also attracted much in-
terest [11–16], along with the experimental advancement in spin-
orbit coupled nanowire systems [17–20]. For the quasi-1D multi-
band nanowires with chiral symmetry, they are in the topologi-
cal class BDI in the Altland–Zirnbauer (AZ) classification with an 
integer topological invariant Z which counts the number of zero-
energy Majorana modes on a given end [11,21]. At the same time, 
there also exists a weak Z2 topological invariant, which can only 
give the parity of the Z index but cannot distinguish between the 
presence and absence of the Majorana modes for even number of 
Z [11]. In a recent paper [12], the authors considered a ladder 
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topological superconductor system, which was simulated by N 1D 
Kitaev chains [22] placed in parallel and coupled to each other, and 
investigated topological quantum transitions in the absence and 
presence of interchain superconducting pairing. It was found that 
the interchain pairing phase may change the system from class BDI 
characterized by the Z index to class D by the Z2 index.

In this paper, we consider a two-leg Kitaev ladder topologi-
cal superconductor system with interchain coupling, as shown in 
Fig. 1. Similar ladder systems have also been investigated in [23,
24]. However, instead of adding interchain superconductor pair-
ing [12] or three-spin interaction [23], we apply uniform or stag-
gered fluxes in all the ladder holes which is experimentally more 
simple and feasible. By use of symmetry analysis and calculation of 
the topological invariants Z2 and/or Z , we find that applying uni-
form or staggered fluxes to the two-leg Kitaev ladder system will 
also break the time-reversal symmetry (TRS) of the system and 
thus play a crucial role in driving the quantum phase transition 
between the BDI class with multiple Majorana zero energy states 
(MZES) and the D class with only one or zero MZES. More im-
portantly, in the TRS-broken D class, the number of MZES can be 
changed by varying either the interchain coupling or the inserted 
fluxes. We emphasize that the ladder’s topological properties as 
well as the number of MZES can be manipulated by simply tun-
ing the flux, which could be much easier to realize experimentally, 
e.g., in the cold atom systems by laser-assisted tunneling [25].

The rest of the paper is organized as follows. In Sec. 2, we an-
alyze the two-leg Kitaev ladder topological superconductor system 
with uniform fluxes inside and in Sec. 3, we investigate the same 
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Fig. 1. (Color online) Schematic illustration of the two-leg Kitaev ladder system with 
(a) uniform and (b) staggered fluxes threading through each ladder hole. In the 
presence of these fluxes, the hopping phase is chosen as eiφ/2 (e−iφ/2) along the 
(reverse) direction of the arrow.

system but with staggered fluxes inside and make a brief discus-
sion on the disappearance of pairs of MZES. Finally, a summary is 
given in Sec. 4.

2. Two-leg Kitaev ladder model with uniform fluxes inside

Consider a two-leg Kitaev ladder system shown in Fig. 1, where 
a couple of one-dimensional topological superconductor chains, 
denoted by A and B, respectively, are placed in parallel with in-
terchain nearest-neighbor hopping amplitude t′ [22,12]. For each 
chain, t is the intrachain nearest-neighbor hopping amplitude, �
is the intrachain nearest-neighbor p-wave superconducting pairing 
amplitude, and μ is the chemical potential. Apply a series of iden-
tical fluxes φ to thread through all the ladder holes, as shown in 
Fig. 1(a), and adopt the translation-invariant gauge for which the 
effective intrachain hopping is teiφ/2 from right to left in subchain 
A and from left to right in subchain B. This specific gauge can be 
hopefully achieved through tuning the hopping phase by experi-
mental methods such as laser-assisted tunneling [25]. Under this 
gauge, the lattice Hamiltonian can be written as

H = −μ

N∑
n=1

∑
τ=A,B

c†
nτ cnτ −

N∑
n=1

(t′c†
nAcnB + h.c.)

−
N−1∑
n=1

∑
τ=A,B

(teiφτz/2c†
nτ cn+1τ + �cnτ cn+1τ + h.c.), (1)

where c†
n(cn) is the creation (annihilation) operator and the 

pseudo-spin operator τz = 1 (−1) for subchain A (B). Through 
the Fourier transformation cnτ = (1/

√
N) 

∑
k ckτ eikn , we get the 

momentum-space Bogoliubov–de Gennes (BdG) Hamiltonian as

h(k) = ( − μ − 2t cos k cos
φ

2

)
σzτ0 + 2t sin k sin(

φ

2
)σ0τz

− 2� sin kσyτ0 − t′σzτx, (2)

in the basis of [ckA, ckB , c†
−kA, c†

−kB ]T , where k belongs to the first 
Brillouin zone and the Pauli matrices τi and σi with i = 0, x, y, z
act in the A–B subchain space and particle-hole space, respectively.

To study the topological phase transition of this system, we 
first need to find the gap-closing points, since the closing and 
reopening process of the bulk gap is usually necessary for the 
transition between topologically distinct phases. Taking the spec-
trum of h(k) to be zero, we get the relation μ = −2t cos(φ/2) ± t′
or μ = 2t cos(φ/2) ± t′ , which may act as phase boundaries. The 
phase boundaries for φ = 0 and φ �= 0 are plotted in the μ–t′ plane 
of Figs. 2(a) and (b), respectively. Then we need to find a topologi-
cal invariant to characterize each phase. We first study the case of 
φ �= 0. The Hamiltonian in Eq. (2) satisfies particle-hole symmetry 
(PHS) σxh(k)T σx = −h(−k) (triplet pairing) with the particle-hole 
reversal operator σx K (K means complex conjugate), but it does 
not satisfy the TRS or chiral symmetry due to the presence of the 

second term on the right side of Eq. (2) provided that φ �= 0. As a 
result, the BdG Hamiltonian for nonzero φ falls into class D with a 
Z2 topological invariant in the 1D system [21]. For any BdG Hamil-
tonian that satisfies the above PHS, a Z2 index can be defined 
as Q =sgn[Pf{h(k = π)σx}/Pf{h(k = 0)σx}], where k = 0 (π) is the 
particle-hole symmetric momentum [11] and Pf means Pfaffian. In 
our system, the second term of Eq. (2) vanishes at k = 0 or π , and 
the calculation for Q can be simplified as [11]

Q = sgn[Det{(−μ + 2t cos φ
2 )τ0 − t′τx}

Det{(−μ − 2t cos φ
2 )τ0 − t′τx}

]

=
⎧⎨
⎩

−1 for
∣∣∣|2t cos φ

2 | − t′
∣∣∣ < |μ| < |2t cos φ

2 | + t′,

1 for |μ| > |2t cos φ
2 | + t′ or |μ| <

∣∣∣|2t cos φ
2 | − t′

∣∣∣. (3)

In the case of φ �= 0, Q acts as the Z2 topological invariant, with 
Q = −1 indicating the nontrivial phase with one (N = 1) MZES 
and Q = 1 indicating the trivial phase without MZES (N = 0). It is 
easily seen from Eq. (3) that the phase boundaries across which Q
changes its sign are exactly consistent with those calculated from 
the gap closing conditions. As shown in Fig. 2(b), three boundary 
lines divide the μ–t′ plane into four regions; the shadow region 
of Q = −1 is the topological phase and others (Q = 1) are trivial. 
We wish to point out here that in this phase diagram, the line of 
t′ = 0 is special and needs to be discussed separately, where the 
two subchains get decoupled and can be treated as two copies of 
1D TRS-broken Kitaev model with the Z2 index of each subchain 
given by Q = sgn

[(
μ − 2t cos(φ/2)

)
/
(
μ + 2t cos(φ/2)

)]
. For |μ| <

2t| cos(φ/2)| and t′ = 0, since each subchain has a contribution of 
N = 1 with Q = −1, we have N = 2 and there are two MZES in 
the red section of line t′ = 0.

Second, we focus on the case of φ = 0 (no flux). In this case, 
since the second term in Eq. (2) vanishes, apart from the PHS, the 
Hamiltonian also satisfies TRS, h(k)∗ = h(−k), and chiral symmetry, 
σxh(k)σx = −h(k), with the chiral operator σx constructed by mul-
tiplying particle-hole operator σx K and time-reversal operator K . 
It thus belongs to class BDI which is characterized by a Z topolog-
ical invariant in the 1D system [21]. Based on the chiral symmetry, 
the BdG Hamiltonian can be brought into an off-diagonal form un-
der a rotation in the particle-hole space by the unitary operator 
U = e−i(π/4)σy

h(k)′φ=0 = Uh(k)φ=0U † =
(

0 q(k)

q(−k)T 0

)
, (4)

with q(k) = (−μ − 2t cos k + 2i� sin k)τ0 − t′τx , and then another 
topological number, called the winding number, can be defined as 
[11,12]

W ≡ −i

2π

2π∫
0

dk∂k ln det q(k)

= −i

2π
tr

2π∫
0

dk∂k ln q(k)

= −i

2π

∑
n=1,2

2π∫
0

dk∂k lnλn(k),

=
⎧⎨
⎩

−2 for |μ| < |2t − t′|,
−1 for |2t − t′| < |μ| < 2t + t′,
0 for |μ| > 2t + t′.

(5)

where

λ1,2(k) = −μ − 2t cos k + 2i� sin k ± t′ (6)
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