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The graded refractive index waveguides can perform Fourier transform for an optical wave. According 
to this characteristic, simpler optical metamaterials with three waveguides are theoretically proposed, in 
which all of the waveguides are materials with a positive refractive index. By selecting the appropriate 
refractive index and structure size, the theory and simulations demonstrated that these metamaterials 
can perform mathematical operations for the outline of incident optical waves, including the first-order 
derivative, second-order derivative and the integral.

© 2016 Published by Elsevier B.V.

1. Introduction

Metamaterials [1,2] are a recent type of artificial structure ma-
terials, and some physical properties presented by metamaterials 
are related to the physical size of their structure. Metamateri-
als provide a brand new concept and method for creating many 
materials with special physical properties in a flexible way. Crys-
tal would be the most intuitive example, which inherently boasts 
a significantly orderly structure. Its order is mainly due to the 
arrangement of atoms which endows the crystal materials with 
specific physical properties that are not possessed by the same 
materials when disordered. Consequently, people come to realize 
the expected physical characteristics through the ordered struc-
ture at all levels, and thus obtain physical properties that are not 
possessed by the disordered or unorganized materials at the same 
level.

Currently, studies on metamaterials have mainly concentrated 
on phototonic crystals [3–5], zero refractive index waveguides 
[6,7], materials with high refractive index [8–10], strong anisotropic 
materials [11–14], and left-handed materials [15,16], among oth-
ers. Metamaterials with mathematical operation functions have 
come to the fore in research in recent years. In 2014, Cui [17] et al. 
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proposed the concept of coding metamaterials, digital metama-
terials and programming metamaterials. Also, an electromagnetic 
wave is manipulated with different coding sequences of the meta-
materials grain, which consists of “0” and “1”. Moreover, Silva et 
al. [18] pioneered the creation of metamaterials analog computing, 
using a metasurface design in which the two ends of the materials 
are different. The left is normal material with positive permittivity 
and positive permeability, while the right is a dual-negative ma-
terial with negative permittivity and negative permeability. In this 
paper, the physical properties of the materials are described with 
respect to the refractive index. All the materials have a positive 
refractive index and can perform the same functions for optical 
waves.

2. Theory

When optical waves propagate through the Graded Refrac-
tive Index (GRIN) waveguides, the GRIN waveguides perform one 
Fourier transform [19] at each characteristic distance Lg , and the 
refractive index of GRIN satisfies η(y) = η1

√
1 − (η2/η1)y2, in 

which, y is y-axis coordinate in two-dimensional Cartesian coor-
dinate system, and η1 is the refractive index at y = 0, η2/η1 =
[π/(2Lg)]2. More details can be found in Ref. [19]. Supposing that 
there are three waveguides (1, 2 and 3) that nest a metamaterial, 
waveguides 1 and 3 are GRIN materials with η1(y) = −η3(y) =
η(y), which perform Fourier and inverse Fourier transform, re-
spectively, and waveguide 2 is the kernel transform function and 
named as G(y). When z-component of the electric field Ez(y) is 
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inputted to the waveguide 1, the output function becomes f ′(ky) =
F [Ez(y)], with F(.) denoting Fourier transform. The Fourier vari-
able ky is in the same domain of y, so y plays the role of ky . 
And the output function of waveguide 2 becomes G(y)F [Ez(y)]. 
Since waveguide 3 performs inverse Fourier transform, the final 
output function is F−1{G(y)F [Ez(y)]}. Now, in order to realize 
the derivative operations, there must be

dn Ez(y)

dyn
= F−1{G(y)F[Ez(y)]} (1)

taking Fourier transform on both sides, we have

F
[

dn Ez(y)

dyn

]
= G(y)F[Ez(y)] (2)

according to the properties of the Fourier function F [ f (n)(t)] =
(iω)nF(ω), we obtain

F
[

dn Ez(y)

dyn

]
= (iky)

n f ′(ky) = (iky)
nF[Ez(y)] (3)

from Eqs. (2)–(3), we can obtain our transfer function G(y) =
(iky)

n ∝ (−iy)n . Supposing that the dimension of waveguide is fi-
nite and limited by W , the normalized transform function becomes 
G(y) ∝ (−iy/y0)

n , where y0 = W /2.
When plane optical waves propagate along the positive di-

rection of the x axis, the electric field satisfies the Helmholtz 
equation

d2

dx2
E(x) + k2 E(x) = 0 (4)

in which, E(x) is the electric field, k = (2π/λ0)
√

εrμr , λ0 is 
the wavelength of incident waves, and εr and μr are the rel-
ative permittivity and relative permeability, respectively. Since 
εrμr = (η − iκ)2 [20], where η and κ are the real and imag-
inary parts of the refractive index, respectively, k can also be 
expressed as k = (2π/λ0)(η − iκ). Since electric field satisfies 
the Helmholtz equation, so in order to perform the derivative 
and integral operations for optical waves, the refractive index of 
waveguide 2 needs to be determined. One solution of Eq. (4)
is

E(x) = E0eikx (5)

where E0 is the electric field at x = 0. Since the electric field on 
the left side of waveguide 2 is F [Ez(y)], likewise, after propaga-
tion through �, the electric field on the right side of waveguide 2 
is F [Ez(y)]eik� with � being the thickness of medium 2. As 
F [Ez(y)]eik� = G(y)F [Ez(y)] ∝ (−iy/y0)

nF [Ez(y)], we obtain

eik� = G(y) ∝ (−iy/y0)
n =

(
−i

2y

W

)n

(6)

namely

eik� = e
i 2π
λ0

[η2(y)−iκ2(y)]� ∝
(

−i
2y

W

)n

(7)

In order to produce an output profile proportional to the first 
derivative of the input function, taking G(y) = (−iy/y0), according 
to Eq. (7), we have

η2(y) − iκ2(y) = i
λ0

2π� log

(
i

W

2y

)
(8)

As for the second derivative, taking G(y) = (−iy/y0)
2, the re-

fractive index is

η2(y) − iκ2(y) = i
2λ0

2π� log

(
i

W

2y

)
(9)

namely

η2(y) = Re

[
i

nλ0

2π�
(

π

2
i + log

W

2y

)]
(10)

κ2(y) = −Im

[
i

nλ0

2π�
(

π

2
i + log

W

2y

)]
(11)

In this context, n is 1 and 2 in Eqs. (10)–(11), and the system can 
complete the first-order derivative and second-order derivative op-
erations for optical waves, respectively.

For the purposes of performing integral operations, the transfer 
function is G(y) = (−iy/d)−1, where d is any normalizing length, 
in this case d = λ0/4. In order to avoid adapting to requirements 
for transmission coefficients with magnitude larger than unity for 
|y| < d, we truncate the refractive index at |y| = d, and assume 
that the absolute value of the refractive index is constant within 
this range. Therefore, the refractive index functions for integral 
are

η2(y) − iκ2(y) = i
λ0

2π�
log

(
−i

y

d

)
for |y| > d (12)

η2(y) − iκ2(y) = − λ0

4�
sign

(
y

d

)
for |y| < d (13)

The above results indicate that if the waveguides 1 and 3 are 
GRIN materials, and the refractive index of waveguide 2 satisfies 
Eqs. (8)–(9) and Eqs. (12)–(13), respectively, the whole structure 
will perform the derivative and integral operations accordingly. 
However, it must also be noted that waveguide 2 and 3 also have 
negative refractive index, thereby increasing the difficulty of the 
experiment, the solution to this problem is as follows:

Since η − iκ = ±√
εrμr , so Eq. (4) also can be expressed as

d2

dx2
E(x) +

(
2π

λ0

)2

(η − ik)2 E(x) = 0 (14)

As for η − iκ = ±√
εrμr , when εr and μr are positive, the refrac-

tive index exhibits positive value, and when εr and μr are nega-
tive, the refractive index exhibits negative value [21,22]. Eq. (14)
implies that regardless of the refractive index being negative or 
positive, there is no difference in Helmholtz equation. Since posi-
tive refractive index produces the same effect as negative refractive 
index, the above derivative and integral operations can be per-
formed with positive or negative refractive index.

3. Modeling

According to the above theory, the metamaterials with three 
waveguides are proposed. The basic model is shown in Fig. 1, 
which presents a modeling diagram of COMSOL Multiphysics 4.4, 
Electromagnetic Waves, and Frequency Domain. The length and 
width of the structure are 2Lg + � and W , respectively. The 
tops and bottoms of the waveguides are perfect matching layer 
with thickness d1 = λ0/4. Limited by memory and speed of the 
computer, the calculation area can not extend to infinity, so 
the boundary is truncated by boundary conditions. The outer 
boundary condition is defined as the scattering boundary, and 
the boundary conditions on the boundaries between the waveg-
uides 1 and 2 and between 2 and 3 are continuous boundary. 
And the optical waves enter from the left and exit from the 
right.

The structural parameters are λ0 = 0.5μm, W = 9.87637λ0, 
Lg = 11.61928λ0, and � = λ0/3.01231. The z-component of the 
electric field of incident optical waves varies with y, and the 
specific expression is Ez(y) = aye−y2/b (in which a = 2.1/λ0, 
b = λ2

0/0.9) or Ez(y) = ce−y2/d2
2(4y2/d2

2 − 2) (in which c = 0.5, 
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