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The spontaneous formation of double helices for filaments under torsion is common and significant. 
For example, the research on the supercoiling of DNA is helpful for understanding the replication and 
transcription of DNA. Similar double helices can appear in carbon nanotube yarns, cables, telephone 
wires and so forth. We noticed that non-uniform double helices can be produced due to the surface 
friction induced by the self-contact. Therefore an ideal model was presented to investigate the formation 
of double helices for elastic rods under torque. A general equilibrium condition which is valid for both 
the smooth surface and the rough surface situations is derived by using the variational method. By 
adding further constraints, the smooth and rough surface situations are investigated in detail respectively. 
Additionally, the model showed that the specific process of how to twist and slack the rod can determine 
the surface friction and hence influence the configuration of the double helix formed by rods with rough 
surfaces. Based on this principle, a method of manufacturing double helices with designed configurations 
was proposed and demonstrated. Finally, experiments were performed to verify the model and the results 
agreed well with the theory.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

It is commonly observed that a twisted yarn tends to writhe 
and form a double-helical structures. The formation of double he-
lices for twisted filaments is of great significance and it has at-
tracted attention from various fields. The formation of supercoil-
ing for DNA chains under torsion has been investigated broadly 
[1–5]. Neukirch and Purohit have investigated plectonemes with 
uniform pitch in DNA taking electrostatic interactions into account 
[6,7]. Van der Heijden and Purohit have considered plectonemes 
with non-uniform helical pitch [8,9]. Y. Shang obtained the double 
helices of carbon nano-tube (CNT) yarns by simply twisting and 
slacking it, which have unique electrical and mechanical proper-
ties [10–12]. The superconductor made from the double helix of 
CNT yarns have been investigated broadly [13]. Besides, the dou-
ble helix of carbon or polymer fibers can be fabricated into the 
artificial muscle, which, as a new concept, have recently attracted 
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wide attention [14,15]. In engineering, cables under torsion may 
form loops and double helices, in which the large deformation may 
damage the cables [16,17].

Two main methods have been proposed to investigate the spa-
tial writhing of twisted filaments. The first is to simplify the fil-
ament or polymer chain as an ideal elastic rod. Based on this 
elastic-rod assumption, the initial buckling and localized post-
buckling, prior to self-contact, of a twisted elastic rod have been 
widely investigated by using the Kirchhoff model [18–22]. The self-
contact for the two strands of double helices was studied by some 
scholars as well [23–26]. The other method mainly focuses on mi-
croscopic polymer chains. To describe the statistical property of 
polymer chains, the Kratky–Porod model, free jointed chain model 
and worm like chain model were put forward [27]. The statistical 
properties of the supercoiling of DNA chains can be described well 
with these models [2,28].

Although the self-contact is considered in some elastic-rod 
models, most scholars still neglected the surface friction [23,22]. 
Without considering the surface friction, the double helix solved 
by whether the Kirchhoff model or the variational method will 
have a uniform double helix (if the slight deviation near the ends 
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Fig. 1. (a) Schematic of the formation process of the double helix. One end is fixed while the other end can be slacked and twisted. The whole elastic rod is divided into 
three parts: head, helix and tail. The pitch the double helix are illustrated. (b) Central lines of the double helix. α is the angle between the tangent vector of the helix and 
the z axis. R is the radius of the double helix central lines. e3, e1 and e2 are the unitary vector in the directions of r′ , r′′ and r′ × r′′ respectively.

is neglected). However, we noticed in most cases the surface fric-
tion is not negligible. On the contrary, it may have a great influ-
ence on the configuration and mechanical properties of the double 
helices. A typical non-uniform double helix can be obtained by 
twisting a rubber rod first and then bringing its two ends to-
gether. In the work of Y. Shang et al. [10–12], the double helices of 
CNT yarns obtained by similar twist-slacking process shown non-
uniformity as well.

To research the formation of double helices for rods under 
torque. First, it can provide a general understanding of the su-
percoiling formation of DNA chains. Furthermore, it has potential 
in controlling the fabrication of the double helices of CNT yarns 
which can serve as high-performance electronic and mechanical 
devices, for example, the superconductors and artificial muscles. 
Besides, in engineering, it can be used to analyze and avoid the 
double helix formation for cables.

In this article, based on the ideal elastic rod model, the varia-
tional method is used to derive the general equilibrium condition 
for the double helix. This condition is valid for both the smooth 
surface and the rough surface situations. By adding a inter-strand 
interaction term in the total potential energy, both the self-contact 
and non-self-contact situations are considered. Different from pre-
vious non-friction assumptions, the influence of the surface friction 
is investigated here. It is found that the surface friction will greatly 
influence the configuration of the double helix, in which case, 
non-uniform double helices can be formed. Moreover, the specific 
process of how the rod is twisted and slacked can determine the 
surface friction and therefore influence the configuration of the 
double helix. Based on this property, a method of producing dou-
ble helices with designed configurations is proposed. Experiments 
are preformed to verify the validity of this model and demonstrate 
the method of producing a double helix with a designed configu-
ration.

2. Model

2.1. General theory

In this section, the general properties of the double helices 
are investigated. By using the variational approach based on the 
energy minimization principle, the general equilibrium condition 
can be obtained. Fig. 1(a) shows the schematic of the forma-
tion process of the double helix. Here, we call this procedure the 
twist-slacking method so as to distinguish it from the conventional 
twist-spinning method [13,5]. To simplify the problem and obtain 
an ideal model, 5 fundamental assumptions are made as follows:

(1) The rod is inextensible with a fixed length L. It has a circular 
cross section with a fixed radius r.

(2) The elasticity of the rod is linear. The twisting and bending are 
uncoupled. The linear-elasticity assumption can be satisfied 
well in our experiments. See more details in the experiment 
section.

(3) The rod can be roughly divided into three parts, as shown in 
Fig. 1(a), namely the tail, helix and head. Since we mainly fo-
cus on the behavior of the helix part, the influence of the head 
is neglected here and the tail is assumed to be straight and 
uniform. This assumption can be perfectly satisfied when the 
helix is long enough. The radius of the double helix composed 
by the central line of the rod is R , as shown in Fig. 1(b).

(4) The rod is quasi-static during the whole slack process.
(5) No dissipative force exists in the formation process, including 

the sliding friction. However static friction is allowed.

Then we describe the geometry of the double helix quantita-
tively. According to assumption 3, all the slack distance S can be 
transformed into the length of the two strands in the double he-
lix, as illustrated in Fig. 1(a). Assume the double helix extends in 
the positive z-axis direction so that the two strands are symmet-
ric about the z-axis, as shown in Fig. 1(b). Then the position vector 
describing the whole central line of the double helix can be writ-
ten as

r(θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎝−R cos θ, R sin θ,

θ∫
0

P

2π
dθ

⎞
⎠ (θ ≥ 0, Strand I)

⎛
⎝R cos θ, R sin θ,

0∫
θ

P

2π
dθ

⎞
⎠ (θ < 0, Strand II)

, (1)

where θ defines the angle that the helix rotates by and P is the 
pitch of the helix (shown in Fig. 1(a). See the exact definition in 
Ref. [29]). Note the two strands are jointed at the head, and thus 
θ ≥ 0 and θ < 0 correspond to the Strand I and Strand II respec-
tively. Here, we will also use the natural coordinate s with its 
origin located at r(0). It represents the distance along the cen-
ter line. Then −S/2 ≤ s < S/2 corresponds to the double helix, 
and S/2 ≤ |s| < L/2 corresponds to the tails. For the helix part we 
have

ds =
√

R2 +
(

P

2π

)2

dθ. (2)

The curvature κ and the torsion τ can be calculated as follows

κ = |ṙ × r̈|
|ṙ|3 , τ = (ṙ × r̈) · ...

r

|ṙ × r̈|2 , (3)
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