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Tunneling of the blocked wave in a circular hydraulic jump
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The formation of a circular hydraulic jump in a thin liquid layer involves the creation of a horizon where 
the incoming wave (surface ripples) is blocked by the fast flowing fluid. That there is a jump at the 
horizon is due to the viscosity of the fluid which is not relevant for the horizon formation. By using a 
tunneling formalism developed for the study of the Hawking radiation from black holes, we explicitly 
show that there will be an exponentially small tunneling of the blocked wave across the horizons as 
anticipated in studies of “analog gravity”.

© 2016 Published by Elsevier B.V.

1. Introduction

A jet of fluid impinging vertically at high speed on a flat surface 
initially flows out radially in a thin almost laminar layer. At a cer-
tain critical radius it jumps to a thicker layer and the flow becomes 
turbulent. For a high viscosity, low surface tension liquid the jump 
is often along a circular ring and is called a circular hydraulic jump 
[1–4]. There are two essential ingredients in the jump:

• The formation of a circular boundary at the critical radius 
r = Rc , which is a demarcation between one-way and two-way 
flow of waves.

• The formation of the jump itself due to the presence of viscos-
ity and the one-way information flow resulting in a bottleneck 
at the boundary.

Below, we see each of these in slightly greater detail.
Assuming the flow to be wholly radial, the formation of the 

boundary at r = Rc is obtained from the condition

v0(Rc) = c(Rc), (1)

where v0(r) is the flow velocity of the water from the ground 
frame, c(r) is the wave velocity of the ripples (which are the rele-
vant hydrodynamic waves in a thin fluid) in the flowing frame, and 
c2 = gh0 where h0(r) is the height of the fluid layer. The height 
h0(r) and hence c are in general slowly varying functions of r. This 
condition has nothing to do with viscosity and gives a boundary 
but not a jump. The continuity equation for the flow requires the 

E-mail address: jkb@hri.res.in.

volumetric flow rate f to be a constant Q independent of the ra-
dial position r

f = rv0(r)h0(r) = Q . (2)

The planar radial flow starting from the origin (the point where 
the jet impinges) is very fast with v0(r) initially greater than the 
ripple velocity c(r). The thin fluid layer height h0(r) is slowly vary-
ing and from Eq. (2) we note that v0(r) has to decrease as the flow 
spreads out. At r = Rc it equals c(r). The radius Rc has a special 
significance. To see that let us consider the velocity of the ripple 
as seen by a laboratory observer. The result c2 = gh is valid for an 
observer for whom the fluid is stationary. A positive c is an outgo-
ing wave and a negative c is an incoming wave. If the fluid is now 
moving with a velocity v0 to the right with respect to the sta-
tionary observer (laboratory frame) then the velocity of the ripple 
according to that observer is v0 + c. If r > Rc , v0 + c > 0 for c > 0
and v0 + c < 0 for c < 0. Hence the laboratory observer concludes 
that for r > Rc , there is both an outgoing and incoming wave. On 
the other hand if r < Rc , then for both positive and negative c, 
v + c > 0 and hence there is NO incoming wave for the laboratory 
observer. This is the phenomenon of wave blocking – the incom-
ing wave is blocked from entering the region r < Rc . The radius 
r = Rc is a horizon in the sense that in the interior there is only 
an outgoing wave and in the exterior there are both outgoing and 
incoming waves. This horizon is the reverse of a black hole hori-
zon (only incoming waves for r > Rc) and is usually referred to as 
a white hole [5–7].

The formation of the jump at the boundary is the handiwork 
of viscosity [8–13]. Viscosity slows down the fluid layers as they 
move downstream and this affects the height of the layer. The 
effect is most extreme at the boundary itself. There, the sudden 
vanishing of incoming waves prevents the information about vis-
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cous retardation from being propagated towards the origin, causing 
a bottleneck and a resulting prominent increase in height. This is 
the jump itself. This phenomenon was captured in the WKB type 
of analysis in Ref. [13].

Assuming the above picture is correct, one can obtain the scal-
ing law for the jump radius Rc . This is done by equating two time 
scales – the time scale τA corresponding to the time required to 
flow from the origin to the horizon and the viscous time scale 
τB . The respective estimates are τA � RC /v0 = RC /(gh0)

1/2 and 
τB = h2

0/η where η is the kinematic viscosity. The volumetric flow 
rate evaluated at the horizon gives Q C = RC g1/2h3/2

0 . Now setting 
τA = τB as the jump condition, we arrive at

Rc ∼ Q 5/8ν−3/8 g1/8, (3)

which is a well known scaling law in this field [8]. Further refine-
ments pertain to the inclusion of surface tension effects [14] and 
the formation of polygonal jumps [15,16]. We do not consider the 
effect of viscosity any more in this work except to show in the 
paragraph below that when the jump occurs at the horizon, the 
correct scaling of the jump radius follows from the qualitative pic-
ture given here. Our concern in what follows thereafter is with the 
horizon formation (wave blocking) alone.

The horizon formation explained above led to a whole body of 
extremely interesting work pointing out the possibility of an ana-
logue of “Hawking radiation” in such cases [17,18]. This essentially 
means that it should be possible for some incoming wave to tun-
nel across the horizon to r < RC . In the case of the real Hawking 
radiation the emission from a black hole is due to quantum fluctu-
ations and quantum field theory is the proper setting for its study. 
However, it was realized that a tunneling formalism [19,20] for the 
quantum fluctuations could also be set up and though there were 
some quantitative issues at first, the correctness of the tunneling 
picture was finally established by the work of Partha Mitra and 
co-workers [21–23].

The most comprehensive discussion of the “Hawking effect” in 
analogue gravity from the view point of quantum field theory has 
been that of Scott Robertson [24]. In the hydraulic jump situation, 
the phenomena involved are completely classical, so it should be 
possible to view it as a linear stability analysis around the static 
solution. This latter solution gives the picture of wave blocking and 
the fluctuations around this steady state could appear as the tun-
neling that has been studied by Mitra [21]. In this Letter I show 
that such an approach is indeed possible, and obtain the presence 
of an exponentially decaying “wrong-way” wave beyond the hori-
zon together with an estimate of its amplitude.

2. The calculation

In the black hole problem, one looks at quantum fluctuations 
around a Schwarzschild background. Here we begin with a static 
solution corresponding to v0(r) and h0(r) and consider small fluc-
tuations δv(r, t) and δh(r, t) around them. This causes the vol-
umetric flow rate f in Eq. (2) to fluctuate and we denote that 
fluctuation by f ′ . Linearizing the hydrodynamic equations around 
the steady state leads to the well known result [13]

∂α

(
gαβ∂β f ′) = 0 (4)

with

gαβ = v0

[
1 v0

v0 v2
0 − gh0

]
(5)

The metric element g22 has a zero at Rc where the flow velocity 
and wave velocity match. The wave blocking that this causes was 
explained physically before. We now point out that this metric cor-
responds to the one describing a Painleve–Gullstrand line element 

and this is in turn related to the Schwarzschild metric as explained 
in detail in Barcelo et al. [25]. This is the quantitative justification 
for the existence of a horizon at Rc . The vanishing of g22 at r = Rc

implies the existence of a horizon. We write out the equation for 
f ′ as

v0∂
2
t f ′ + v2

0∂t∂r f ′ + ∂r
(

v2
0∂t f ′) + ∂r

(
v0

(
v2

0 − c2)∂r f ′′) = 0 (6)

We look for separable solutions f ′(r, t) = S(r)ψ(t), substitute this 
ansatz into the above and find that

v0 S
ψ̈

ψ
+ ∂r

(
v2

0 S
) ψ̇

ψ
+ v2

0∂r S
ψ̇

ψ
+ ∂r

(
v0

(
v2

0 − c2)∂r S
) = 0 (7)

Separation of variables now requires that ψ̇/ψ = const . Without 
loss of generality we can write the constant as −iω, with the spec-
trum of ω being continuous. Then ψ = e−iωt with the constant 
of integration absorbed into S for now. Solving Eq. (7) with this 
ansatz yields the spatial part S(r, ω). Adding up all the separable 
solutions for each ω yields that

f ′(r, t) = 1

2π

∞∫
−∞

dω e−iωt S(r,ω), (8)

i.e. f ′(r, t) is the Fourier transform of S(r, ω). The spatial part 
S(r, ω) satisfies

(
v2

0 − c2)d2 S

dr2
+

[
3v0

dv0

dr
− 1

v0

d

dr

(
v0c2) − i2v0ω

]
dS

dr

−
(
ω2 + i2ω

dv0

dr

)
S = 0 (9)

Since we are looking for a wave-like solution (the ripples) there is 
a definite expectation about the form of S(r, ω). The ripples have 
wavelength much smaller than Rc and hence we are looking at so-
lutions with high wave-number and consequently high frequency. 
Near the horizon, v0 � c and at high frequencies Eq. (9) admits 
WKB type treatment. This was first noted in an astrophysical con-
text by Petterson et. al. [26]. Accordingly we expand

S(r,ω) = exp iKω(r) = exp i

( ∞∑
n=−1

ϕn(r)

ωn

)
(10)

where ϕn(r) are complex-valued functions of r. The leading term 
ϕ−1(r) satisfies

d

dr
ϕ−1(r) = 1

v0 ± c
. (11)

In the above expression, we have, for the positive sign, and outgo-
ing wave for both r < Rc and r > Rc . However when we take the 
negative sign there is an incoming wave for r > Rc and again an 
outgoing wave for r < Rc . This is the wave blocking we discussed 
before, now seen quantitatively.

At the next order i.e. n = 0 we get

ϕ0 = i
1

2
log(cv0) + const. (12)

For two significant terms the solution is

S(r,ω) = 1

(cv0)1/2

[
A1 exp iω

(∫
dr

v0 + c

)

+ A2 exp iω

(∫
dr

v0 − c

)]
(13)

where A1 and A2 are constants of integration. For large r, ϕ−1 ∼ r
while ϕ0 ∼ log r, which is an indicator of successive terms falling 
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