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The coalgebraic structure of the harmonic oscillator is used to underline possible connections between 
continuous and discrete superintegrable models which can be described in terms of SUSY discrete 
quantum mechanics. A set of 1-parameter algebraic transformations is introduced in order to generate 
a discrete representation for the coalgebraic harmonic oscillator. This set of transformations is shown to 
play a role in the generalization of classical orthogonal polynomials to the realm of discrete orthogonal 
polynomials in the Askey scheme. As an explicit example the connection between Hermite and Charlier 
oscillators, that share the same coalgebraic structure, is presented and a two-dimensional maximally 
superintegrable version of the Charlier oscillator is constructed.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

A superintegrable system is, roughly speaking, a n-dimensional
Hamiltonian system that allows a number m > n of integrals of 
motion. If m = 2n − 1 then the system is called Maximally Super-
integrable (MS). Due to its high number of symmetries, this class 
of systems is of great importance in mathematical physics. On the 
one hand, MS systems find many applications as exactly solvable 
models [1] in several areas of physics, such as condensed mat-
ter physics, nuclear physics and celestial mechanics [2–7]. On the 
other hand, they are also of interest in pure mathematics, due to
the multiple connections with group theory and the search for new 
classes of orthogonal polynomials, just to cite a few (see the review 
paper [8] and references therein). The search and classification for 
MS systems has been performed over the years by using many dif-
ferent approaches. A possibility consists in considering a general 
Hamiltonian H(x, p) = p2 + V (x) and imposing the existence of a 
set of constants of the motion {Ii} under some specific assump-
tions such that {H, Ii} = 0 or [H, Ii] = 0, respectively in classical 
and quantum mechanics. The above constraints turn into a set of 
determining equations which can be used to classify completely a 
given class of MS systems. However, the complexity of these de-
termining equations grows in a severe way proportionally to the 
Hamiltonian degrees of freedom. This partially justifies the abun-
dance of studies of superintegrable systems in two dimensions 
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[9–12]. In order to construct higher dimensional superintegrable 
systems without tackling the above mentioned issues, Ballesteros 
et al. introduced a novel algebraic approach based on coalgebras 
[13,14].

This technique consists in defining both the Hamiltonians and 
their constants of motion as functions of generators of a given al-
gebra equipped with a coproduct. Once an algebra representation 
is chosen, then the coproduct can be used to rise the dimension 
of the representation without losing the superintegrability proper-
ties. This is because the coproduct provides, at each application, 
a set of additional symmetries “the partial Casimirs”, which help 
to keep the system superintegrable. The coalgebra technique has 
been successfully used to construct new families of integrable and 
superintegrable systems, see e.g. [15,16].

As underlined in the previous paragraphs, two-dimensional MS 
systems have been object of deep studies and many classifications 
are available both in Euclidean and non-Euclidean spaces.

As recently showed, the coalgebraic analysis can also be used 
to give new insights about the already known classifications of su-
perintegrable systems: in [17] it has been shown that a canonical 
transformation can generate different coalgebraic systems which, 
once embedded in higher dimensional spaces, generate genuinely 
new superintegrable systems as deformations, or generalizations, 
of TTW systems [18,19] to non-Euclidean spaces. The same phi-
losophy has been reproposed in [20], involving a gauge transfor-
mation applied to a two-dimensional scalar Hamiltonian. In that 
case the two-dimensional coalgebraic Hamiltonian, when realized 
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in three dimensions, turned out to be a non-scalar superintegrable 
Hamiltonian with spin interactions.

The main goal of the present paper is to carry on along this 
path, by showing that the coalgebraic structure could be success-
fully used to obtain discrete N-dimensional generalization of su-
perintegrable families defined for continuous systems, or as an 
elegant way to unify different families of superintegrable systems 
as different realizations of a common coalgebraic structure. In par-
ticular, we focus the analysis on the prototype example of superin-
tegrable system, the harmonic oscillator, whose discrete versions 
have been largely investigated both for their mathematical and 
physical interest (see [21–23] and the more recent papers [24,25]).

The paper is organized as follows:

• In section 2 we discuss the harmonic oscillator in terms of 
its coalgebra symmetry, both in the classical and the quan-
tum case. This allows us to introduce the basic notions we 
need throughout the paper. Moreover, we review the spectral 
problem for the quantum harmonic oscillator in one and two 
dimensions in cartesian coordinates. For the latter case, the 
conserved quantities that make the system maximally super-
integrable are reported.

• In section 3 we introduce an algebraic transformation that 
allows us to construct a discrete version of the sl(2, R) coal-
gebra and, as a consequence, a discrete model of the quantum 
harmonic oscillator. We solve the spectral problem of the dis-
crete oscillator model and, by using its coalgebra symmetry, 
we extend it to higher dimensions preserving the superinte-
grability of the Hamiltonian. For the sake of clarity, we focus 
to the two-dimensional case, for which the conserved quanti-
ties making the discrete system maximally superintegrable are 
explicitly constructed.

• In section 4 concluding remarks and future investigations are 
discussed.

2. The harmonic oscillator and the sl(2, RRR) coalgebra

2.1. The classical case

Let us consider the following oscillator Hamiltonian (smooth) 
function H : M → R, defined on the symplectic manifold (M =
R

2, ω0 = dx ∧ dp) (from now on we shall set m = ω = 1):

H(x, p) = p2 + x2

2
, (1)

where x, p are canonical (local) coordinates on M such as 
{x, p} = 1. This Hamiltonian can be expressed in terms of the gen-
erators of an sl(2, R) coalgebra (see e.g. [26]):

{ J−, J+} = 4 J3 , { J3, J±} = ±2 J± , (2)

equipped with the (primitive) coproduct map � : sl(2, R) →
sl(2, R) ⊗ sl(2, R):

�( Jσ )
.= Jσ ⊗ 1 + 1 ⊗ Jσ , �(1)

.= 1 ⊗ 1 (with σ = ±,3). (3)

A symplectic realization of (2) is given by:

D( J+) = p2 , D( J−) = x2 , D( J3) = xp , (4)

and the Casimir of the algebra is C( J±, J3) 
.= J+ J− − J 2

3 = 0, in 
the given representation. In terms of these algebraic elements the 
Hamiltonian (1) can be expressed in the following form:

(sl(2,R) algebra) H( J−, J+) = J+ + J−
2

D−→ H(x, p) = D( J+) + D( J−)

2
(classical mechanics) . (5)

The advantage of having this representation for the Hamiltonian 
function is related to the mathematical properties of coalgebras. In 
particular, since the coproduct map defines a homomorphism for 
the Poisson algebra (2), i.e.:

{�( J−),�( J+)} = 4�( J3) , {�( J3),�( J±)} = ±2�( J±) , (6)

it is straightforward to extend the classical system to higher di-
mensions [13,14]. In fact, because of the homomorphism property, 
it is immediate to show that the two-particle Hamiltonian can be 
constructed through the coproduct of H , namely:

H (2) .= �(H( J−, J+)) = H(�( J−),�( J+)) , (7)

and the new Hamiltonian will Poisson commute with the coprod-
uct of the new Casimir C (2) .= �(C), i.e.:

0 = �({H, C}) = {�(H),�(C)} = {H(2), C (2)} . (8)

A crucial feature of the coproduct is related to the fact that it 
defines a coassociative map, which means that the following rela-
tion holds:

(� ⊗ id) ◦ � = (id ⊗ �) ◦ �, (9)

namely, the following diagram is commutative:

sl(2,R) sl(2,R) ⊗ sl(2,R)

sl(2,R) ⊗ sl(2,R) sl(2,R) ⊗ sl(2,R) ⊗ sl(2,R)

�

�

�⊗id

id⊗�

Roughly speaking, this property allows one to define an object 
on sl(2, R) ⊗ sl(2, R) ⊗ sl(2, R) in two possible ways, and this is 
intimately related to the superintegrability properties of the sys-
tem under consideration. In fact, if we consider the more general 
N-particle realization of the sl(2, R):

D( J (N)
+ ) =

N∑
k=1

p2
k , D( J (N)

− ) =
N∑

k=1

x2
k , D( J (N)

3 ) =
N∑

k=1

xk pk , (10)

where we defined J (N)
+

.= �(N)( J+) = �(�(. . . ( J+))) (N-times), 
the coalgebra symmetry implies that the three algebra elements 
J (N)
±,3 Poisson commute with a set of Casimir functions obtained 

by a “k-fold” (2 ≤ k ≤ N) left or right application of the coproduct 
� : sl(2, R) → sl(2,R) ⊗ sl(2,R) ⊗ · · · ⊗ sl(2,R)︸ ︷︷ ︸

N-times

, i.e.:

{ J (N)
±,3, C (k)} = { J (N)

±,3, C(k)} = 0 , (11)⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C (k) .= �(k)(C)⊗1 ⊗ · · · ⊗ 1︸ ︷︷ ︸
N−k

,

C(k)
.= 1 ⊗ · · · ⊗ 1︸ ︷︷ ︸

N−k

⊗�(k)(C) .
(12)

Since C (N) = C(N) , we will have a total number of 2N − 3
Casimirs C (2) . . . C (N), C(2) . . . C(N−1) that, due to the above prop-
erty, are in involution with the N-dimensional Hamiltonian1:

H (N)( J (N)
− , J (N)

+ ) = J (N)
+ + J (N)

−
2

=
N∑

j=1

p2
j + x2

j

2
. (13)

This allows us to conclude that the system we are dealing with 
is, by construction, quasi maximally superintegrable (QMS), since it 

1 In the following, to simplify the notation, we will often drop the symbol D to 
indicate the given representation.
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