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By using non-additive Tsallis entropy we demonstrate numerically that one-dimensional quasicrystals, 
whose energy spectra are multifractal Cantor sets, are characterized by an entropic parameter, and 
calculate the electronic specific heat, where we consider a non-additive entropy Sq . In our method we 
consider an energy spectra calculated using the one-dimensional tight binding Schrödinger equation, and 
their bands (or levels) are scaled onto the [0, 1] interval. The Tsallis’ formalism is applied to the energy 
spectra of Fibonacci and double-period one-dimensional quasiperiodic lattices. We analytically obtain an 
expression for the specific heat that we consider to be more appropriate to calculate this quantity in 
those quasiperiodic structures.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Since the discovery of quasicrystals by Shechtman et al. [1], 
awarded with the Nobel Prize, and the pioneering work of Merlin 
et al. [2] on the nonperiodic Fibonacci and Thue–Morse GaAs–AlAs 
superlattices, quasicrystals have emerged as a new form of mat-
ter. Quasicrystals are a particular type of solid that have a discrete 
point-group symmetry not present in Bravais lattices, like a C5
symmetry in two dimensions, or icosahedral symmetry in three di-
mensions [3–6]. In one dimension (1D), the Fibonacci sequence can 
directly be translated into a layered quasicrystal structure, which 
is feasible through atomic-precision growth via molecular-beam 
epitaxy (MBE) [2]. Also, 1D passive photonic (and phononic) qua-
sicrystals have been realized by MBE and other techniques. As a 
result of these advances, samples can now be prepared consisting 
of sequences of building blocks of different materials, in that the 
thickness and composition of individual layers can be controlled 
with high precision. Several interesting experimental studies have 
been reported in last two decades, like the transmission of bulk 
acoustic phonons [7], surface acoustic waves [8], photonic disper-
sion relation [9] and localization of light waves [10–12], to cite a 
few. From a theoretical point of view, the behavior of a variety 
of particles or quasiparticles, such as electrons [13], phonons [14,
15], photons [16,17], polaritons [18] and magnons [19] were inves-
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tigated. For example, recently, Tanese et al. [20] have reported a 
fractal energy spectrum of a polariton gas confined in a quasiperi-
odic one-dimensional cavity described by a Fibonacci sequence. On 
the theoretical side, very recently, one of us have reported a spin-
glass ordering in a two-dimensional square lattice by using the 
Ising model with ferromagnetic and antiferromagnetic exchange 
interactions following a quasiperiodic Fibonacci sequence in both 
directions of a square lattice [21]. A rather fascinating feature of 
these quasiperiodic structures is that they exhibit collective prop-
erties not shared by their constituents. Therefore, the long-range 
correlations induced by the construction of these systems are ex-
pected to be reflected someway in their various spectra (light 
propagation, electronic transmission, density of states, polaritons, 
etc.), defining a novel description of disorder or a new class of 
universality.

On the other hand, the analysis of the thermodynamic proper-
ties based on the energy spectrum derived from a fractal structure 
was pioneered by Tsallis and collaborators [22,23]. Their model 
was based on the most well-known and simple deterministic frac-
tal geometry, the triadic Cantor set, and they showed that the 
specific heat of such a system exhibits a very particular behavior: 
it oscillates log-periodically around a mean value that equals the 
fractal dimension of the spectrum. Such oscillations also appear 
in other fractal sets [24,25]. Afterwards, Mauriz and collaborators 
[27,28] have presented a model based on the polariton’s and elec-
tron’s multifractal energy spectra for artificial structures following 
the Fibonacci, Thue–Morse and double-period sequences, in order 
to study their thermodynamic properties. They proved that in the 
case of Fibonacci quasicrystals, whose incommensurate parameter 
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is equal to the golden mean, there are two classes of log-periodic 
oscillations for the specific heat in the low temperature regime, 
one for the even and the other for the odd generation number of 
the sequence, with amplitude of the odd oscillations being bigger 
than the amplitude of the even one. These results are not observed 
in others sequences, except for a generalized Fibonacci sequence 
[29].

In recent years, a trend towards the non-additive statistical 
physics is rapidly increasing. In this context, the endeavor of the 
generalization of some of the conventional concepts has been un-
der investigation. A quite interesting generalization of the conven-
tional entropy form has been advanced by Tsallis [30] inspired 
by fractal and multifractal concepts. The generalized entropy pos-
sesses the usual properties of positivity, equiprobability, concav-
ity, irreversibility and generalizes the standard additivity. This new 
formalism is called the nonextensive statistical mechanical formal-
ism (NSMF) and has been proposed to treat problems with better 
results than the standard Boltzmann–Gibbs (BG) statistics, for in-
stance, problems involving long-range interactions or long-range 
memory. The NSMF has been successfully applied to numerous 
concepts of statistical thermodynamics [34–39] and to many is-
sues in the context of high energy physics [40–43], stellar poly-
tropes [44], thermodynamic of black holes [45], relative informa-
tion in cosmology [46], quantum entropies [47] and statistics of 
earthquakes [48].

Based on the fractal properties of these systems and also due 
to the long-range correlations induced by the construction of these 
systems, we can infer that the most appropriate statistic to study 
the thermodynamical properties of these complex systems is the 
nonextensive statistical mechanical formalism developed by Tsal-
lis [30]. Therefore in this work we investigate the theoretical be-
havior of some thermodynamical quantities, namely the specific 
heat, free energy and entropy, calculated by considering the non-
additivity effects arising on the system.

2. Energy spectra for quasiperiodic lattices

In this section we briefly describe a transfer matrix treatment1

for a quasiperiodic chain which follows Fibonacci (FB) and double-
period (DP) rules of growth. For this purpose, we will consider a 
binary sequence of sites in the lattice where the potentials Vn are 
arranged in a quasiperiodic fashion. By using the transfer matrix 
treatment, the (discrete) Schrödinger equation in the tight-binding 
(TB) approximation for this system can be written in the form [13](

ψn+1
ψn

)
= M(n)

(
ψn

ψn−1

)
(1)

where M(n) is the transfer matrix of the system that makes a 
link from the physical properties of the n-th site to those of the 
(n + 1)-th one. After successive applications of the transfer matri-
ces we have M(n) = Mn Mn−1 · · · M2M1. In this way we can obtain 
the wave function at arbitrary sites. The numerical evaluation of 
the products of these transfer matrices is completely equivalent to 
numerically solve the Schrödinger equation for the quasiperiodic 
system above.

Here we consider that the potential Vn take only two different 
values V A and V B arranged in accordance with the quasiperiodic 
Fibonacci and double-period sequences. By shifting the zero en-
ergy, we can choose, without loss of generality, these two value 
of the potentials to be opposite, namely V A = V and V B = −V , 
where V is the potential strength.

The Fibonacci structure can be grown experimentally by jux-
taposition of layers A and B, such as this superlattice can be 

1 See ref. [49] for an example of transfer matrices applied to Cantor sets.

constructed recursively as follow: Sn+1 = Sn Sn−1 for n ≥ 1, with 
S0 = B and S1 = A. This recursion rule is equivalent to the infla-
tion rule A → AB and B → A. This sequence increases with the 
Fibonacci number Fn , defined by Fn = Fn−1 + Fn−2, with the initial 
conditions F0 = F1 = 1. The ratio Fn/Fn−1 for increasing n con-
verges towards the golden mean τ = (1/2)(1 + √

5). Analogously, 
the n-th generation of the double-period sequence can be obtained 
from the relations Sn = Sn−1 S†

n−1, and S†
n = Sn−1 Sn−1 (for n ≥ 1). 

The number of letters in this sequence increases as 2n , and the ini-
tial conditions are S0 = A and S†

0 = B . Its inflation rule is given by 
the transformations A → AB , B → A A.

For the FB quasiperiodic lattice, the transfer matrix is given by 
the product of Fn matrices M j ( j = A, B), given by

M j =
(

E − V j −1
1 0

)
. (2)

It is easily shown that Mn obeys [13]

Mn+1 = Mn−1Mn (3)

with M0 = MB and M1 = M A . The double-period (DP) sequence 
starting matrices are analogous to the Fibonacci sequence, i.e., in 
our notation, S0 = M1 = M A and S†

0 = M0 = MB . Note that Eq. (3)
depends on energy E . Since the determinant of Mn is the unit, 
the energy spectrum of the system is determined by E values 
which satisfy |T r(Mn)| ≤ 2, where T r() means the trace of a ma-
trix. This is equivalent to look for energies where the solutions ψn

do not grow exponentially. Once obtained, this energy spectra al-
low us to calculate the specific heat given by the system’s allowed 
bands.

The first connection with physical properties of quasicrystalline 
superlattices was made by Kohmoto and Banavar [13]. In their 
work the authors obtain a set of recursion relations and self-
consistent maps. These equations define the trace map of the sys-
tem and are the key for the study of the wavefunction localization 
and spectral properties. With the aid of those relations and the ini-
tial conditions one can determinate the real allowed values of the 
energy for a given generation number n. Numerical examples for 
FB and DP quasiperiodic spectra are shown in the references [27,
28]. In the next section we will apply these rules to numerically 
obtain the specific heat.

3. Specific heat

It is our intention in this section to discuss in detail how to 
obtain an expression for the generalized entropy and specific heat, 
from the energy spectrum. The starting point for this is the energy 
spectrum for the continuous fractal set, depicted in Fig. 1, for the 
FB and DP sequences, where

�i = ε2i − ε2i−1 =⇒ ε2i = ε2i−1 + �i . (4)

Thus, when we scale the spectra above onto the [0, 1] interval, 
we can see that n = 1 (where n is the generation number) corre-
sponds to a continuous spectrum going from ε1 to (ε1 +�1); n = 2
corresponds to a spectrum whose first branch goes from ε1 to 
ε2 = (ε1 + �1) and the second one goes from ε3 to ε4 = (ε3 + �2)

and so on for increasing n. We take the level density (DOS) inside 
each band to be constant, and the same for all bands in a given 
hierarchy. In this case, a fractal emerges at the n → ∞ limit. One 
can, however, make a detailed study considering the influence of 
a non-uniform DOS [26]. For examples of energy spectra of other 
quasiperiodic sequences see, e.g., [27–29].

To study such complex systems, we use a non-additive en-
tropy which was introduced by Tsallis in 1988 [30] and was later 
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