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In order to study the behaviour of discrete dynamical systems under adiabatic cyclic variations of their 
parameters, we consider discrete versions of adiabatically-rotated rotators. Parallelling the studies in 
continuous systems, we generalize the concept of geometric phase to discrete dynamics and investigate 
its presence in these rotators. For the rotated sine circle map, we demonstrate an analytical relationship 
between the geometric phase and the rotation number of the system. For the discrete version of the 
rotated rotator considered by Berry, the rotated standard map, we further explore this connection as 
well as the role of the geometric phase at the onset of chaos. Further into the chaotic regime, we show 
that the geometric phase is also related to the diffusive behaviour of the dynamical variables and the 
Lyapunov exponent.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In continuous time dynamics, the study of adiabatic perturba-
tions in general, and of adiabatic cyclic variations in particular, 
is closely related to the concepts of anholonomy and geometric 
phase. The geometric phase [1,2] is, indeed, a particular example 
of anholonomy that we can phrase as the failure of certain vari-
ables to return to their original values after a closed circuit in the 
parameters. Physical expressions of such anholonomies appear in 
the rotation of the plane of oscillation of a Foucault pendulum [3], 
how swimming is performed by microorganisms at low Reynolds 
numbers [4], how the stomach mixes [5], and how a falling cat can 
manage to reorientate itself in mid air in order to land on its feet 
[6]. The geometric phase was originally encountered — as Berry’s 
phase — in quantum mechanics [7,8]. From there, it was general-
ized to classical integrable systems as Hannay’s angle [9]. Later it 
was extended to nonintegrable perturbations of Hamiltonian sys-
tems [10–12], and thence to dissipative systems [13–15], all these 
instances within the context of continuous-time dynamics. In the 
same context, rotated rotators have been natural models in which 
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to study this phenomenon because they provide an easy way to 
control the adiabatic nature of the cyclic variation of the parame-
ter. With this in mind, Berry and Morgan, for instance, investigated 
the geometric phase of a continuous-time Hamiltonian rotated ro-
tator [16]. In spite of the extensive research that has taken place in 
the last few decades on geometric phases in a large class of appli-
cations, neither the geometric phase nor any of its cognates have 
been considered hitherto in discrete dynamical systems. Moreover, 
the general question of how a mapping-defined dynamics behaves 
under an adiabatic parametric cyclic perturbation has not been ad-
dressed until now. Our purpose in this paper is to make good this 
deficit and to introduce a discrete analogue of the geometric phase 
and show that it is linked to important aspects of the dynamics 
of maps. In order to do so, we adopt the paradigm of the rotated 
rotator but follow an inverse sequence to the historical develop-
ment. In the first place we deal with the sine circle map that may 
be thought of as the discretization of a kicked rotator of the type 
Berry and Morgan studied with the addition of strong dissipation. 
We consider the results of discrete adiabatically-evolving param-
eter loops in such a prototypical discrete-time dynamical system. 
The geometric phase in the rotated circle map, it turns out, is in-
timately related to the behaviour of the rotation number of the 
map as a function of the bare frequency parameter. Turning to the 
Hamiltonian side, we study the rotated standard map, in which we 
discover surprising relationships between the geometric phase, not 
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Fig. 1. (a) Devil’s quarry plot of rotation number ρ in the sine circle map; a section through the quarry with k constant is a devil’s staircase. (b) Geometric phase φg plotted 
against � for the rotated critical (k = 1) sine circle map of Eq. (4). (c) In a colormap, same as in (b) but as a function of both parameters � and k.

only with the rotation number as in the former case, but also with 
the Lyapunov exponent and the diffusive behaviour of both action 
and phase variables. The reason for our following this inverted de-
velopmental sequence is that 1D circle maps are simpler as regards 
the transition from integrability to chaos, in comparison with the 
much richer behaviour of the 2D Hamiltonian case.

2. The rotated circle map

Before introducing our rotated version of the circle map, let us 
first recall a few necessary definitions and results on the original 
non-rotated one. The circle map, usually written as

θn+1 = f n+1
�,k (θ0) = θn + � − k

2π
sin 2πθn mod 1, (1)

where θn = f n
�,k(θ0) represents the nth iterate of θ0, which quali-

tatively describes the dynamics of two interacting nonlinear oscil-
lators, is a one-dimensional discrete mapping that describes how a 
rotator of natural frequency � behaves when forced at frequency 
one through a coupling of strength k. When k = 0 the rotator runs 
uncoupled at frequency �, but when k > 0 it can lock into a peri-
odic orbit: a resonance with some rational ratio p/q to the driving 
frequency. To measure the frequency of the rotator, i.e., the average 
rotation per iteration of the map, it is useful to define the rotation 
number

ρ = lim
N→∞

θN − θ0

N
. (2)

If we plot rotation number ρ against � and k — a few hundred it-
erations after discarding an initial transient are sufficient to give an 
accurate value for ρ — we obtain the devil’s quarry [17] illustrated 
in Fig. 1(a). Periodic orbits with different rational rotation num-
bers show up as so-called Arnold tongues: flat steps in Fig. 1(a). 
When k < 1 the map is termed subcritical, and intervals on which 
the rotation number is constant and rational, where there is a pe-
riodic orbit of a particular period, punctuate intervals of increasing 
rotation number, whereas in supercritical circle maps (k > 1) the 
periodic orbits overlap. Chaos is found in the supercritical circle 
map as iterates wander between the overlapping resonances. In a 
critical circle map at k = 1, at every value of � there is a peri-
odic orbit, and the rotation number increases in a staircase fashion 
with steps at each rational rotation number and risers in between. 
The devil’s quarry becomes the devil’s staircase when we look at a 
section with k constant through the quarry. The ordering of peri-
odic orbits in the devil’s staircase has been understood in terms of 
Farey sequences and Stern–Brocot trees [18–21], and the transition 
to chaos in the circle map is well understood.

Now let us consider the rotated circle map; probably the sim-
plest discrete time system with a discretely and adiabatically vary-
ing parameter. To this end we introduce a discrete slowly varying 
parameter Xn:

θn+1 = θn + � − k

2π
sin 2π(θn + Xn) mod 1,

Xn+1 = Xn + �X = Xn ± 1/N, (3)

where n = 1, 2, . . . N , with N → ∞ for adiabaticity. Is there a ge-
ometric contribution to the phase after such an excursion? Let us 
perform the change of variable θ ′

n = θn + Xn , under which the map 
can be written as

θ ′
n+1 = θ ′

n + (� + �X) − k

2π
sin 2πθ ′

n mod 1

= θ ′
n + �′ − k

2π
sin 2πθ ′

n mod 1, (4)

where �′ = � ± 1/N . So it is seen that the effect of the parameter 
loop is just a shift in the value of �.

In general, if one takes a system through a parameter loop, one 
obtains as a result three phases: a dynamic phase, a nonadiabatic 
phase, and a geometric phase. If one then traverses the same loop 
in the opposite direction, the dynamic phase accumulates as be-
fore, while the geometric phase is reversed in sign. There is, of 
course, still the nonadiabatic phase too; to get rid of this one must 
travel slowly around the loop. Thence the geometric phase may be 
obtained as

φg = lim
N→∞

φ+ − φ−
2

, (5)

where φ+ and φ− are, respectively, the total angles θ accumulated 
by travelling around the loop in the positive and negative direc-
tions. In terms of the primed variables, we can also define

φg
′ = lim

N→∞
f N
�+1/N,k(θ0) − f N

�−1/N,k(θ0)

2
, (6)

the obvious relation φg = φg
′ − 1. Let us evaluate this limit, first 

for the simple case k = 0. Then f N
�,0 = θ0 + N�, so f N

�−1/N,0 =
θ0 + N� −1 and f N

�+1/N,0 = θ0 + N� +1, hence φg
′ = 1 and φg = 0. 

This limiting case is conceptually equivalent to that of a Foucault 
pendulum located at the Earth’s equator where the plane of oscil-
lations remains fixed as the Earth rotates.

More interesting is what happens when k �= 0. From the defini-
tion of the rotation number

ρ = lim
N→∞

f N
�,k(θ0) − θ0

N
= lim

N→∞ρN
�,k(θ0), (7)

where we are defining ρN
�,k(θ0) = ( f N

�,k(θ0) − θ0)/N , we have that

φg
′ = lim

N→∞
f N
�+1/N,k(θ0) − f N

�−1/N,k(θ0)

2

= lim
N→∞

ρN
�+1/N,k(θ0) − ρN

�−1/N,k(θ0)

2/N
. (8)
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