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We report numerical simulations of the mixed flows of two groups of deformable self-driven objects. The 
objects belonging to the group A (B) have drift coefficient D = DA (DB), where a positive (negative) value 
of D denotes the rightward (leftward) driving force. For co-current flows (DA, DB > 0), the result is rather 
intuitive: the net flow of one group (Q A) increases if the driving force of the other group is stronger 
than its own driving force (i.e., DB > DA), and decreases otherwise (DB < DA). For countercurrent flows 
(DB < 0 < DA), however, the result appears paradoxical: the net flow of one group (Q A) can increase 
with the driving force of the other group (|DB|), and the net flow with a stronger countercurrent can 
be larger than the net flow with a weaker co-current. This phenomenon is observed only for deformable 
objects and results from the entanglement of objects, which in turn is caused by their deformability.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Various multibody systems of self-driven objects have been ac-
tively studied in a variety of research fields from physical sys-
tems to biological or socio-economic systems, such as the traffic 
flow of vehicles or pedestrians, bacterial colonies, flocks of birds, 
crowd panics, or stock market dynamics [1]. In past studies on 
these multibody systems, each self-driven object was traditionally 
treated as a point-like particle (with only the minimum excluded-
volume effect) or as a rigid body (with the additional effects of size 
and/or shape). From the viewpoint of statistical physics, however, it 
is important and intriguing to examine how macroscopic, collective 
behaviors are affected by the microscopic, individual properties in-
cluding deformability.

On the basis of this perspective, we proposed the flexible chain-
like walker (FCW) model to study the dynamics of multibody 
systems of deformable self-driven objects [2] and found some pe-
culiar collective behaviors caused by the deformability of individ-
uals [2–4]. For example, in the simplest simulations where FCWs 
just move around in a square area, they exhibit “spontaneous, irre-
versible aggregation” [2]. Although there have been various aggre-
gation models such as the diffusion-limited-aggregation (DLA) [5], 
ballistic deposition [6,7], and the Eden model [8], as well as other 
models of aggregation of particles [9–13] or of particles aggre-
gates [14–16], all of these models require some adherence for the 
occurrence and irreversibility of the process. In contrast, the ag-
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gregation of FCWs is caused by the deformability of each FCW, 
and thus observed though no adherence is assumed, which clearly 
demonstrates the novelty of the mechanism of the process. An-
other example is the “complete jamming” of FCWs, which is ob-
served when there is a net flow of FCWs [4]. Although there have 
been many reports of complete jamming (in which each object 
makes a complete stop and does not move again), all of the re-
ports are on counter flows [17–23], crossing flows [24–28], or on 
flows through obstacles [29]. The complete jamming of FCWs is 
the first report for the simplest transport system of unidirectional 
net flow without obstacles. In this study, we numerically simulate 
mixed flows of FCWs, wherein another peculiar collective behavior 
of deformable objects is observed.

2. Model and simulation

The outline of the FCW model is as follows [2,4]. An FCW of 
length l comprises l serially concatenated particles, which, on a 
two-dimensional square lattice, occupy l horizontally or vertically 
adjacent sites. One of the edge particles (the first particle) rep-
resents the head of the object and the other (the lth particle) 
represents the tail. At every time step, the head particle stochasti-
cally chooses one of its four nearest-neighbor sites and moves to 
that site if it is not occupied by another particle. The head particle 
is followed by the subsequent particles (see Fig. 1, which illus-
trates the movement of an l = 5 FCW). In this study, each FCW 
always moves unless movement is impossible (i.e., when all four 
nearest-neighbor sites are occupied, in which case the FCW does 
not move for that time step), which is realized by repeating the 
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Fig. 1. Typical series of movements of an l = 5 FCW. The head particle (represented by the double circle) moves to one of its four nearest-neighbor sites, followed by the 
subsequent particles. Possible moving directions are indicated by arrows, one of which is the bias direction, represented by the larger arrow (+x direction, corresponding to 
D > 0).

choosing process if an occupied site has been chosen. We should 
note here that deformability is introduced in each FCW if and only 
if l ≥ 3. We also note that the FCW model may be related to poly-
mer physics by further studies such as a recent report of off-lattice 
simulations [30], in which the head particle can move in any di-
rection and the positions of the subsequent particles can fluctuate, 
unlike in the present work.

In choosing the direction of motion, we also introduce a “bias”, 
which is denoted by the drift coefficient D (−1 ≤ D ≤ 1), where a 
positive (negative) value of D means a higher probability of choos-
ing the +x (−x) direction, and thus a net collective flow in that 
direction. Specifically, the probabilities of choosing the ±x and ±y
directions are given by

p+x = D + 1 − D

4
, p−x = p+y = p−y = 1 − D

4
(1)

for D ≥ 0, and

p−x = |D| + 1 − |D|
4

, p+x = p+y = p−y = 1 − |D|
4

(2)

for D < 0.
The simulations are conducted in a channel of L sites in length 

(x direction) and W sites in width (y direction) with periodic 
boundaries in both directions. We set L = 100 and W = 20, un-
less otherwise noted. At t = 0, N objects of length l are placed 
at random positions in the channel; each object is placed in line 
with the channel, facing the +x direction (i.e., with its head parti-
cle placed rightmost) for D > 0, −x direction for D < 0, and either 
+x or −x direction for D = 0, where the direction is stochastically 
chosen on a fifty–fifty basis. All N objects try to move as described 
above, in a random order which is updated every time step.

To describe the behavior of these objects, we define the fol-
lowing quantities. The density of particles is the ratio of the total 
number of particles to the number of sites in the channel:

ρ = lN

LW
. (3)

The mean velocity v(t) and the net flow Q (t) are defined as

v(t) = n+(t) − n−(t)

lN
, (4)

Q (t) = ρv(t) = n+(t) − n−(t)

LW
, (5)

where n±(t) is the number of particles that have moved in the ±x
direction at time t (note that n+(t) + n−(t) ≤ lN).

In this study, we prepare two groups, A and B, of FCWs. The A 
and B FCWs have the same length lA = lB, and the two groups 
contain the same number of FCWs, so NA = NB (and thus, the 
particle densities are the same: ρA = ρB). The only difference is 
in their drift coefficients DA and DB. Although DA is fixed at 
a positive value, DB can be either positive or negative, to al-
low both co-current flows (DA, DB > 0) and countercurrent flows 
(DA > 0 > DB).

Furthermore, to demonstrate the effect of deformability, we also 
simulate rigid objects [4] and compare the results with those of 
FCWs. A rigid object of length l moves one site in either of the four 

directions, with its horizontal rod-like shape fixed (i.e., straight in 
the ±x directions). The probabilities of choosing the direction are 
given by Eqs. (1) and (2). Note that the longer the rigid object, 
the lower the probability of moving in either +y or −y direc-
tion when the particle density ρ is high; it is necessary that all l
nearest neighbor sites in the chosen +y or −y direction are un-
occupied so that the object can actually move in that direction. 
Therefore, even for l = 2, the rigid object is not identical with the 
FCW (without deformability); the former can move in either +y
or −y direction only if both of the two nearest neighbor sites in 
that direction are unoccupied, resulting in a horizontal position, 
whereas the latter can move if the nearest neighbor site of the 
head particle is unoccupied, resulting in a vertical position.

3. Results

The mean velocity v(t) and the net flow Q (t) were generally 
found to decrease with time and asymptotically approach v∞ and 
Q ∞ (t → ∞), respectively. Hereafter, the mean velocity v and the 
net flow Q refer to these asymptotic values v∞ and Q ∞ , respec-
tively.

Let us first compare the results of simulations for FCWs with 
those for rigid objects. Figs. 2 and 3 show typical results for rigid 
objects and FCWs, respectively. In both figures, the mean veloc-
ity vA (left) and the net flow Q A (right) of group A are plotted 
as functions of the particle density ρA (= ρB) for l = 2, 3, and 5
(from top to bottom). The drift coefficient of group B varies accord-
ing to DB = −0.9, −0.6, −0.3, 0, 0.3, 0.6, and 0.9, whereas that of 
group A is fixed at DA = 0.6. Each plotted symbol is obtained 
by averaging the value over 50 000 time steps in the asymptotic 
state (t = 50 001 to 100 000) and over at least 100 simulation 
runs.

We begin by checking the behavior of the rigid objects (Fig. 2), 
which is rather intuitive. The vA and Q A plots have the following 
features. For l = 2 and 3, the shape of the curve for co-current 
flows (DB > 0) differs from that for countercurrent flows (DB <

0), with a transitional curve for DB = 0, whereas the difference is 
negligible for l = 5. However, the point is that, irrespective of the 
length l, the curves for DB = −0.9, −0.6, −0.3, 0, 0.3, 0.6, and 0.9
lie in this order from bottom to top, which means that vA and Q A
increase with DB. In other words, the flow of rigid objects is larger 
when accompanied by a co-current than by a countercurrent, by a 
stronger co-current than by a weaker co-current, and by a weaker 
countercurrent than by a stronger countercurrent.

We now consider the results for the FCWs (Fig. 3). We see that 
the behavior qualitatively differs depending on the length l. For 
l = 2, in which case FCWs are not deformable, the plots are sim-
ilar to those for rigid objects. However, for l = 3 and 5, in which 
case FCWs are deformable, the plots differ significantly from those 
for l = 2. Even for co-current flows (DB > 0), vA and Q A drop to 
zero at relatively low particle density ρA. For countercurrent flows 
(DB < 0), the result is more intriguing. For l = 2, the curves for 
DB = −0.3, −0.6, and −0.9 lie in this order from top to bottom, 
which means that the net flow (and the mean velocity) decreases 
as the countercurrent strengthens (the larger |DB|, the smaller 
Q A). For l = 3, however, the three curves almost overlap, which 
means that the strength of the countercurrent has little effect on 
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