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Localization properties of the two-component randomly layered media (RLM) are studied in detail both 
analytically and numerically. The localization length is found fluctuating around the analytical result 
obtained under the high-frequency limit. The fluctuation amplitude approaches zero with the increasing 
of disorder, which is characterized by the distribution width of random thickness. It is also found that 
the localization length over the mean thickness periodically varies with the distribution center of random 
thickness. For the multi-component RLM structure, the arrangement of material must be considered.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Localization, known as the absence of the transport wave, is 
one of the most important properties of disordered media [1–5]. 
The one-dimensional disordered structure typically refers to the 
randomly layered media (RLM), which is a stack of dielectric films 
with randomly varying thickness. RLM has been applied in realiz-
ing the necklace states [6], the optical bistability [7–9], the broad-
band reflector [10,11], and so on [12–17]. The theoretical study 
mainly focuses on the two-component RLM with high-frequency 
limit (strong disorder), which means that the distribution width 
is much larger than the wavelength [18]. However, as far as we 
know, analytical discussion about localization properties of RLM 
with the weak disorder has not been studied yet, which could 
be helpful to understand the behavior of the non-ideal photonic 
crystal and optimizing the parameters of RLM to reach enough lo-
calization strength.

The localization property of RLM is characterized by the in-
verse localization length, l−1

loc , which means that the field amplitude 
decreases by e−1 per lloc on average. In general, the localization 
length is calculated from statistical results of numerical simula-
tion or experiment. The analytical expression had been derived 
only when both the approximation of the zero-energy flux and 
the complete phase stochastization were satisfied [18]. The RLM 
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has the transmissivity T ∼ exp(−2l−1
loc L) in statistics (L is the total 

length of RLM). Transmission energy flux exponentially decreases 
with L increasing. Hence, an RLM structure with L large enough 
acts just as a broadband perfect reflector, where only the standing 
wave can be found. It means that the former assumption of the 
zero-energy flux approximation would always establish in the case 
of considering a large enough RLM structures [10,11].

The phase of each layer is considered to be the main variable 
of profiling the field in RLM. The latter assumption of the com-
plete phase stochastization means the phase uniformly distributed 
on (0, 2π). It only stands for the high-frequency limit (or strong 
disorder, i.e., the distribution width of the random thickness is 
much larger than the wavelength). Finally, the integral form of lo-
calization length can be simplified to a simple and full analytical 
expression (see Ref. [18]). However, if the distribution width of the 
random thickness is comparable to the wavelength, i.e., the weak 
disorder condition, the assumption of complete phase stochastiza-
tion is no longer applicable. The phase distributions are related to 
each other and become non-uniform distributions. The inverse lo-
calization length is formed in an integration expression finally.

In this work, the localization properties of the two-component 
RLM are studied both analytically and numerically. In section 2, an 
iteration method is raised to obtain the non-uniform phase distri-
bution in the case of weak disorder when the high-frequency limit 
is unsatisfied. An analytical expression of the localization length 
is derived in the integral form. In section 3, the numerical results 
are presented. It is found that the localization length is determined 
by the refractive indexes of each component and the distribution 
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Fig. 1. (Color online.) The schematic diagram of the randomly layered media.

characteristic of the random thickness, which is described by the 
distribution center and distribution width. We also discuss the in-
fluences of the layer arrangement for three-component RLM at the 
end.

2. Structure and method

The two-component RLM consists of dielectric layers of alter-
nating refractive index εA and εB as shown in Fig. 1. We use the 
phase defined as ϕn = k0nndn to represent the thickness, instead of 
the real thickness dn . The refractive index of layer n is nn = (εn)1/2

and k0 = 2π/λ0 is the vacuum propagation constant at wave-
length λ0. For simplicity, we just consider the special condition 
that the random thicknesses of all the layers uniformly distribute 
in the same interval of ϕn ∈ (�0 − �1, �0 + �1), n = 1, 2, · · · , N . 
For the condition of normal incidence, it is possible that we use 
three parameters, A+

n , A−
n and φn (or ψn), to characterize the elec-

tric field in layer n as shown in Fig. 1. By regarding the structure 
as a part of a large RLM, the zero flux approximation should be 
established [10,11], which means A+

n = A−
n = An .

In each layer, the amplitude has no change. The two phases of 
φn and ψn are related by

φn = ϕn + ψn. (1)

At the boundary, the incident field An+1e−iψn+1 falls to
An+1e−iψn+1tn+1,n after the interface of n + 1 → n. tn+1,n repre-
sents the transmission coefficient at the interface of n + 1 → n. 
tn+1,n . And then, it will be amplified by the cavity resonance with 
the amplification coefficient Ln(φn):

Ln+1(φn) = 1

1 − rn,n+1e2iφn
, (2)

where rn,n+1 is the reflection coefficient at the interface n → n + 1. 
Hence, An+1e−iψn+1 is relative to Ane−iφn by

Ane−iφn = An+1e−iψn+1tn+1,n Ln+1(φn), (3)

Eq. (2) and Eq. (3) can be simplified to

Ln+1(φn)| = ηn+1 + ηn

2
√

ηn+1
2cos2φn + ηn

2sin2φn

(4)

ψn+1(φn) = arg(ηn+1 cosφn + iηn sinφn), (5)

where the ηn = (ε0εn/μ0)
−1/2 is the wave admittance of layer n. 

The transmissivity at the boundary n + 1 → n is

Tn+1,n(φn) = ∣∣An/An+1
∣∣2

ηn/ηn+1. (6)

For the whole N-layer RLM, we obtain

T N ,1 = T N,N−1(φN−1)T N−1,N−2(φN−2) · · · T2,1(φ1). (7)

φn on each layer can be obtained from the iteration relation of 
Eq. (1) and Eq. (5) with an initial phase φ1.

It is found that the choice of the initial phase φ1 barely affects 
the final result of T N,1 due to the localization property of the RLM 
structure. According to Eq. (1) and Eq. (5), a small variation of δφ1
spreading from layer 1 to layer 2 becomes

δφ2 = ∂φ1φ2δφ1 = T2,1δφ1. (8)

Eq. (8) is also an iteration formula and δφn = Tn,1δφ1 is obtained. 
According to the localization property of RLM, Tn,1 is an expo-
nentially small value when n is large enough. Therefore, the small 
variation of δφ1 barely affects the phase on layer n. It means that 
no matter what value we choose as the initial phase φ1, {φn} will 
be rapidly convergent to the same sequence, which is determined 
by the structure.

The localization property is characterized by the inverse lo-
calization length l−1

loc . It has the meaning that the field ampli-
tude reduces to e−1 after propagating a length of lloc on av-
erage, and the transmissivity exponentially decreases with total 
length L increasing. That is 〈T N,1〉 = exp[−2l−1

loc (N − 1)s0], where 
s0 = (ε

−1/2
A + ε

−1/2
B )λ0�0/4π = 〈L〉/(N − 1) is the mean thickness 

of each layer. 〈T N,1〉 with fixed N is a self-averaging quality, which 
means the T N,1 of any large enough RLM coincides with its mean 
value with the exponential accuracy [4,18]. So the T N,1 of a large 
enough RLM can take the place of the statistical 〈T N,1〉 of a large 
amount of RLM structures with an acceptable error. Because the 
terms in the product of Eq. (7) are commutative, the only thing we 
need is the distribution of Tn+1,n(φn), which is determined by the 
distribution property of the sequence {φn}. All the odd (even) lay-
ers are equivalent for the two-component RLM as shown in Fig. 1. 
It means that all the {φn} label odd (even) distribute the same. 
We label the odd (even) interface of A → B (B → A) to I (II) and 
the two probability density functions of {φn} can be expressed as 
gI(φ) and gII(φ), respectively. Notice that there should be no differ-
ences between the phase distributions obtained from the statistics 
of a large RLM or a large amount of RLM structures. In other 
words, if we use the probability density function gn(φn) to de-
scribe the phase distribution of layer n, then g2n+1(φ2n+1) = gI(φ)

and g2n(φ2n) = gII(φ) will establish for odd and even layers, re-
spectively.

The probability density function of phase ψn and φn ∈ (−π/2,

π/2) are fn(ψn) and gn(φn), respectively. The relationship between 
gn(φn) and gn+1(φn+1) can be obtained from the iteration relation 
of Eq. (1) and Eq. (5). Eq. (5) gives ψn as a function of φn−1. With 
its inverse function of φn−1(ψn), we have the iteration relation of 
fn(ψn) = gn−1[φn−1(ψn)]/ψ ′

n[φn−1(ψn)], which could be simplified 
to

fn(ψn) = ηn−1ηn

η2
n−1cos2ψn + η2

nsin2ψn

gn−1[arg(ηn−1 cosψn + iηn sinψn)].
(9)

fn(ψn) and gn(φn) have a periodicity of π . As probability density 
functions, 

∫ π/2
−π/2 dψ fn(ψ) = ∫ π/2

−π/2 dφgn−1(φ) = 1 must be satis-
fied. The thickness ϕn homogeneously distributes in the interval 
of (�0 − �1, �0 + �1), that is the probability density functions of 
the uniform distribution of ϕn is

hn(ϕn) = 1

2�1
rect(

ϕn − �0

�1
). (10)

According to Eq. (1), the probability density function of gn−1(φn−1)

should be the convolution of hn−1(ϕn−1) and fn−1(ψn−1):

gn−1(φn−1) = fn−1(φn−1) ∗ hn−1(φn−1). (11)
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