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We study theoretically the effects of long-range and on-site Coulomb interactions on the topological 
phases and transport properties of spin–orbit-coupled quasi-one-dimensional quantum wires imposed on 
a s-wave superconductor. The distributions of the electrostatic potential and charge density are calculated 
self-consistently within the Hartree approximation. Due to the finite width of the wires and charge 
repulsion, the potential and density distribute inhomogeneously in the transverse direction and tend to 
accumulate along the lateral edges where the hard-wall confinement is assumed. This result has profound 
effects on the topological phases and the differential conductance of the interacting quantum wires and 
their hybrid junctions with superconductors. Coulomb interactions renormalize the gate voltage and alter 
the topological phases strongly by enhancing the topological regimes and producing jagged boundaries. 
Moreover, the multicritical points connecting different topological phases are modified remarkably in 
striking contrast to the predictions of the two-band model. We further suggest the possible non-magnetic 
topological phase transitions manipulated externally with the aid of long-range interactions. Finally, the 
transport properties of normal–superconductor junctions are further examined, in particular, the impacts 
of Coulomb interactions on the zero-bias peaks related to the Majorana fermions and near zero-energy 
peaks.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The existence of Majorana fermions (MFs) as elementary par-
ticles has been a myth since the original proposal suggested by 
E. Majorana in 1937 [1]. In recent years, condensed matter physi-
cists have been searching for the Majorana fermions as quasi-
particle excitations in various solid state hybrid structures with 
vigorous efforts attributed to some alluring and promising theo-
retical predictions [2–4]. The enthusiasm was further ignited by 
the relevant experimental realizations in semiconductor quantum 
wires with strong spin–orbit couplings and proximity-induced s-
wave superconductivity by Mourik et al. [5] and other groups sub-
sequently [6–8]. In these experiments, zero-bias conductance peaks 
have been observed due to perfect Andreev reflection, signaling 
the presence of Majorana states at the ends of quantum wires. 
The experimental measurements show that the zero-bias differen-
tial conductance evolves into peaks as the system is tuned into the 
predicted topological regime without taking into account various 
effects, such as the finite-length, finite temperature, and electron–
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electron interactions etc. To clarify some discrepancies between 
experiments and theories, the effects of disorder [9,10], nonclosure 
of gaps [11], inhomogeneous pairing potentials [12] have been in-
vestigated theoretically. More severely, alternative mechanisms, for 
example, the Andreev bound state [13] and the Kondo effect [14]
which also produce the zero-bias peaks have been suggested to 
challenge the experimental findings.

Among all the aforementioned effects, the electronic interaction 
is of vital importance and tricky to treat microscopically [15]. It is 
expected that Coulomb interactions can strongly influence the sta-
bility of Majorana modes [16–18], and are, therefore, crucial for 
understanding quantitatively the experimental findings and ulti-
mately recognition of the existence of Majorana bound states at 
the ends of quantum wires. In the one-dimensional (1D) quan-
tum wires, repulsive interacting electrons form interacting Lut-
tinger liquids and should be described more precisely by the cor-
responding theory [19,17]. To attack this problem, various methods 
have been employed. Based on the density matrix renormaliza-
tion group (DMRG), tunneling spectra of interacting Kitaev chains 
and Majorana edge states have been examined [15]. In particu-
lar, E. Stoudenmire et al. [20] compared systematically the DMRG, 
Hartree–Fock, and bosonization approaches for treating the inter-
acting Majorana wires and found that the interaction problem can 
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be described reasonably well using Hartree–Fock theory with the 
sufficiently strong proximity effect and applied magnetic fields al-
beit it deserves more powerful DMRG and bosonization techniques. 
Besides the single-mode wires, multichannel wires have also been 
studied considerably [21–25]. Lutchyn et al. [22] have studied the 
roles of interactions on the low-energy topological phase diagram 
near the multicritical point connecting the topological phases orig-
inating from the first and second transverse subbands, and re-
vealed that the interactions renormalize the phase boundary near 
the multicritical point leading to the hybridization of Majorana 
modes from different subbands. Furthermore, the presence of dis-
order was found to induce the phase transition from topological 
phases to trivial localized phases together with interactions [26].

In a realistic experimental setup, the semiconducting quantum 
wire with a high g-factor and spin–orbit coupling is exposed on 
a metallic s-wave superconductor to get a proximity energy gap. 
The metallic superconductor, as a secondary effect, may drive the 
electronic interactions into a strongly screened regime [27]. Conse-
quently, the electronic density and potential distributions in multi-
band nanowires are rather inhomogeneous along the transverse 
direction due to the finite width and electronic repulsions. This 
inhomogeneity in electrostatic potential can be one of the major 
sources of the soft superconducting gaps. For the transport proper-
ties of the semiconductor–superconductor hybrid structures, much 
of the prior work has been focusing on the non-interacting cases
[28,29,19,30–32]. How the screened interactions and the inhomo-
geneous potential distribution influence the topological phases in 
multiband quantum wires and the related Majorana modes, has 
received relatively less attention. In this work, we study the topo-
logical phases and Majorana zero mode in a typical experiment-
relevant semiconductor–superconductor hybrid device composed 
of an interacting quantum wire in proximity to a s-wave super-
conductor. The screened Coulomb interactions are incorporated by 
the self-consistent Hartree–Fock calculations in the presence of 
external magnetic fields. It is shown that electron–electron interac-
tions strongly change the energy bands and modify the topological 
phase boundaries as well as the emergence of Majorana modes.

The paper is organized as follows. In Sec. 2 we introduce the 
structure to be investigated and formulate our model. The calcula-
tion results are presented and discussed in Sec. 3. Sec. 4 contains 
the summary and conclusions.

2. Theoretical model

We consider a spin–orbit-coupled semiconductor quantum wire 
of the width W in the y-direction and the length L along the 
x-direction deposited on an s-wave superconducting electrode, 
while its left side is contacted through a tunnel barrier U p by a 
normal metallic lead as shown in Fig. 1(a). The s-wave supercon-
ductor induces a paring potential � for the electrons in the wire. 
The whole system is subjected to a uniform in-plane magnetic field 
Bx . Throughout the calculations, we choose the realistic parameters 
for InSb semiconductor quantum wires: � = 0.25 meV, g-factor 
g = 50, Rashba spin–orbit coupling strength tR = 20 meV · nm, and 
effective mass m∗ = 0.015me with me being the electron mass [5,
6,33].

The system is described by the tight-binding Hamiltonian con-
sisting of three terms as

H = H0 + H R + HU , (1)

with respective form given by

H0 =
∑
i,σ

c†
i,σ (ε0 + V H − eV g)ci,σ − t

∑
〈i, j〉,σ

c†
i,σ c j,σ

+ 1

2
gμB

∑
i;σ ,σ ′

c†
i,σ sx Bxci,σ ′ ; (2)

H R = itR

∑
〈i, j〉;σ ,σ ′

êz · (s × di j)c†
i,σ c j,σ ′ ; (3)

HU = U
∑
i,σ

niσ niσ̄ , (4)

where c†
i,σ and ci,σ are creation and annihilation operators for 

an electron with spin σ(↑, ↓) on site i, and s denotes the Pauli 
matrices. The Hamiltonian H0 in Eq. (2) represents the Hamilto-
nian of semiconductor quantum wires including the on-site energy 
ε0 = −4t and the hopping energy t between the nearest-neighbor-
ing sites along x- and y-directions. V H and eV g are the Hartree 
potential and the potential from gate voltages, respectively. V g and 
e are respective the gate voltage and the electron charge. It is the 
gate voltage that induces extra charges into the wire. Thus, eV g

plays a similar role to the chemical potential in the non-interacting 
model.

The last contribution is from the Zeeman splitting due to the 
in-plane magnetic field Bx where magnetic fields only affect the 
local spins. For high-order effects, the term due to the magnetic 
field impacts on nonlocal spins might be included. The role of this 
high-order term will be analogous to that of the spin–orbit cou-
pling and is to decrease the requirement of the spin–orbit strength 
for topological phases. The term H R in Eq. (3) describes the Rashba 
spin–orbit coupling with di j being a lattice vector pointing from 
site j to site i. 〈〉 runs over all the nearest-neighboring sites. The 
on-site electronic interactions between electrons of the opposite 
spins are captured by the Hubbard-like term HU in Eq. (4). To fa-
cilitate the computation, Eq. (4) can be rewritten within the mean-
field approximation such that a charge with spin σ at the site ri
interacts with the average charge population with an opposite spin 
〈nσ̄ 〉 at the same site and vice versa. The Hubbard-like interaction 
with different strengths has been treated in various techniques, 
which suggests that the mean-field approximation is sufficiently 
exact compared with the DMRG approach provided that the in-
teraction is not very strong [20]. Throughout this work, we use 
U = 4� which ensures the validity of the mean-field approach. 
The effects from varying the strength U are not our major pur-
poses since they have been investigated systematically.

Moreover, the Hartree term V H (r) in Eq. (2) depicts the long-
range Coulomb interactions between charges at different sites in 
the semiconducting quantum wire, [34,27]

V H (ri) = e2

4πε0εr

∑
ri �=r j

n(r j)

⎛
⎜⎝ 1

|ri − r j| − 1√
|ri − r j|2 + 4d2

⎞
⎟⎠ ,

(5)

where d is the distance between the quantum wire and the super-
conducting metallic gate, and the second part in the parentheses
is the contribution from the mirror charges due to the presence of 
the metallic superconducting gate. It is the solution of the Poisson 
equation with the present boundary conditions. The mirror charge 
term screens the Coulomb interactions and reduces the field ef-
fects of gates [35]. The average charge population at the site ri is 
calculated by

〈nσ (ri)〉 = − 1

π

eV g∫

−∞

[Gσ (ri, ri; E)] f F D(E, E F )dE, (6)

where Gσ (ri, ri; E) is the Green’s function on the site ri at en-
ergy E for spin σ . From the computational point of view, both 
short- or long-range Coulomb interactions affect only the diago-
nal elements of the Hamiltonian matrix. Eqs. (1)–(6) can be solved 
self-consistently starting from some initial guess of charge density 
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