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This paper presents a direct method to obtain the deterministic and stochastic contribution of the 
sum of two independent stochastic processes, one of which is an Ornstein–Uhlenbeck process and the 
other a general (non-linear) Langevin process. The method is able to distinguish between the stochastic 
processes, retrieving their corresponding stochastic evolution equations. This framework is based on a 
recent approach for the analysis of multidimensional Langevin-type stochastic processes in the presence 
of strong measurement (or observational) noise, which is here extended to impose neither constraints 
nor parameters and extract all coefficients directly from the empirical data sets. Using synthetic data, it 
is shown that the method yields satisfactory results.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction and motivation

An important topic in the analysis of time-series of complex 
dynamical systems is the extraction of the underlying process dy-
namics. Often it is possible to reveal the deterministic and stochas-
tic contributions of the underlying stochastic process using the Itô–
Langevin equation, a stochastic equation that describes the evolu-
tion of a stochastic variable. The deterministic and stochastic con-
tributions are given by the so-called drift and diffusion coefficients, 
which can be directly derived from data via joint moments [4]. 
This approach has been applied successfully to several areas [5], 
for example the description of turbulence [4,17], the analysis of 
climate data [10], financial data [16], biological systems [19] and 
wind energy production [15,13].

However, typically the time-series to be analyzed is subject to 
noise, which is associated to the measurement devices or other 
sources. This so-called measurement noise, also known as obser-
vational noise, is not involved in the dynamics of the original 
signal. Nevertheless it spoils the data series by hiding the un-
derlying stochastic process. In this case, the joint moments are 
not accessible but only their “noisy” analogues. Several approaches 
have been published to overcome this challenge. The authors of

E-mail address: tascholz@fc.ul.pt (T. Scholz).

Refs. [3] and [9] introduced a method that allows the estimation 
of the drift and diffusion coefficients in the presence of strong, 
delta-correlated Gaussian measurement noise. An alternative ap-
proach was presented by Lehle [7] that can deal with strong, ex-
ponentially correlated Gaussian noise in one dimension, which was 
extended to be applicable to multidimensional time-series [8]. This 
approach is the basis of the method presented in this paper. Here, 
instead of using a parameterized form of the coefficients defin-
ing the stochastic processes, the method extracts all coefficients 
directly from the data.

In a more general framework, the paper presents a method 
which allows to distinguish between two superposed signals, i.e. 
extract their respective evolution equations, if one of them is an 
Ornstein–Uhlenbeck process. Specifically, the method serves to ex-
tract the measurement noise parameters as well as the drift and 
diffusion coefficients describing the stochastic process from the 
original data, which henceforth are called “noisy” data. This allows 
to separate the two stochastic signals: the measurement noise, 
described by an Ornstein–Uhlenbeck process, and the underlying 
general Langevin process. The method can be applied to a set of 
N coupled stochastic variables superposed with a set of N sources 
of correlated measurement noise and the code is accessible by re-
quest to the authors.
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0375-9601/© 2016 Elsevier B.V. All rights reserved.
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The paper is structured as follows. The theoretical background 
of the Langevin analysis of stochastic processes and the extrac-
tion of the coefficients from data is briefly summarized in Sec. 2. 
Section 3 gives an overview of the method to obtain those coef-
ficients in the presence of measurement noise. Subsequently, the 
two main challenges in the method are presented: a) the solution 
of a nonlinear equation system to obtain the measurement noise 
parameters, which is described in Sec. 4, and b) the solution of a 
system of convolution equations to estimate the joint moments of 
the underlying stochastic process, which is described in Sec. 5. The 
results of application to a synthetic data set are shown in Sec. 6, 
demonstrating the accuracy of the presented approach as well as 
its limits. Section 7 discusses possible applications of the method 
and concludes the paper.

2. A general model for noisy stochastic processes

The evolution of a stochastic variable can be described by the 
Itô–Langevin equation, a stochastic equation defined by a deter-
ministic contribution (drift) and fluctuations from possible stochas-
tic sources (diffusion). For the general case of a N-dimensional 
stochastic process X(t) the equation is given by:

dx = D(1)(x)dt +
√

D(2)(x)dW(t), (1)

where dW denotes a vector of increments of independent Wiener 
processes with 〈dWi〉 = 0 and 〈dWi, dW j〉 = δi jdt ∀i, j = 1, . . . , N , 
where 〈〉 denotes the average and δi j the Kronecker delta. Func-
tions D(1)(x) and D(2)(x) are the Kramers–Moyal coefficients of 
the corresponding Fokker–Planck equation that describes the evo-
lution of the conditional probability density function. In the case 
the distribution of initial conditions is known one can derive the 
evolution equation of the joint probability density function f (x, t)
of the stochastic variables x. It is given by:

∂ f (x, t)

∂t
= −

N∑
i=1

∂

∂xi

[
D(1)

i (x) f (x, t)
]

+
N∑

i=1

N∑
j=1

∂2

∂xi∂x j

[
D(2)

i j (x) f (x, t)
]
. (2)

The Kramers–Moyal coefficients, also called the drift (D(1)(x)) 
and diffusion (D(2)(x)) coefficients, can be directly derived from 
measurements [5]. However, here we consider that each measured 
stochastic variable is the sum of two independent stochastic pro-
cesses X and Y :

X∗(t) = X(t) + Y(t). (3)

Since such a situation can be regarded as having a set of N
stochastic signals X(t) spoiled by a set of N sources of measure-
ment noise Y(t), we call the variables X∗(t) a N-dimensional noisy
stochastic process. Fig. 1 shows a specific example of such super-
position of stochastic processes that will be addressed below in 
detail, plotting the first component of X∗ , X and Y. We assume the 
measurement noise Y(t) to be described by an Ornstein–Uhlenbeck 
process in N dimensions:

dy(t) = −Ay(t)dt + √
BdW(t), (4)

where A and B are N × N matrices, B is symmetric positive 
semi-definite and the eigenvalues of A have a positive real part. 
Thus, the N-dimensional noisy stochastic process X∗ is modeled by 
Eqs. (3) and (4) together. Note that here and throughout the paper 
x denotes the accessible values of any of the involved stochastic 
processes X(t), X∗(t) or Y(t).

Fig. 1. Illustration of a stochastic process X(t) (top), governed by a nonlinear 
Langevin equation (Eq. (1)), a correlated measurement noise Y(t) (middle), governed 
by a Ornstein–Uhlenbeck process (Eq. (4)) and the superposition of both processes 
X∗(t) = X(t) + Y(t) (bottom).

3. From data to model: the inverse problem

This section explains how to obtain the drift and diffusion coef-
ficients along with the measurement noise parameters from noisy 
data X∗(t). The methodology is sketched in Fig. 2 and the idea be-
hind it is that, if the measurement noise is independent of the 
stochastic process, it is possible to derive an equation system that 
relates the noisy moments m∗(0)(x), m∗(1)(x, τ ) and m∗(2)(x, τ )

with the measurement noise-free moments m(0)(x), m(1)(x, τ ) and 
m(2)(x, τ ) and solving it in a parameter-free way is the heart of 
this paper.

The system of equations (for a derivation see Appendix A) is 
given by:

m∗(0)(x) ≡
∫
x′

ρ∗(x,x′, τ )dx′ = ρY (x) ∗ m(0)(x), (5a)

m∗(1)
i (x, τ ) ≡

∫
x′

(x′
i(t + τ ) − xi(t))ρ

∗(x,x′, τ )dx′

= ρY (x) ∗ m(1)
i (x, τ ) + H (1)

i (A,B,m∗(0)(x)), (5b)

m∗(2)
i j (x, τ )

≡
∫
x′

(x′
i(t + τ ) − xi(t))(x′

j(t + τ ) − x j(t))ρ
∗(x,x′, τ )dx′

= ρY (x) ∗ m(2)
i j (x, τ ) + H (2)

i j (A,B,m∗(0)(x),m∗(1)(x, τ )), (5c)

where i, j = 1, . . . , N and

ρ∗(x) = f (x, t), (6a)

ρ∗(x,x′, τ ) = f (x, t;x′, t + τ ), (6b)

are the one and two-point probability density functions of the 
noisy data, respectively, and

ρY (x) = 1√
(2π)N |det(V)|e− 1

2 xT V−1x , (7)

is the probability density function of the measurement noise, 
assuming that it is distributed with a normalized Gauss func-
tion G(x, 0, V) with zero average and covariance V. The functions 
H (1)

i (A, B, m∗(0)(x)) and H (2)
i j (A, B, m∗(0)(x), m∗(1)(x, τ )) are given 

by
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