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Cascading failure is an important process which has been widely used to model catastrophic events such 
as blackouts and financial crisis in real systems. However, so far most of the studies in the literature 
focus on the cascading process on nodes, leaving the possibility of link cascade overlooked. In many real 
cases, the catastrophic events are actually formed by the successive disappearance of links. Examples 
exist in the financial systems where the firms and banks (i.e. nodes) still exist but many financial trades 
(i.e. links) are gone during the crisis, and the air transportation systems where the airports (i.e. nodes) 
are still functional but many airlines (i.e. links) stop operating during bad weather. In this letter, we 
develop a link cascade model in complex networks. With this model, we find that both artificial and real 
networks tend to collapse even if a few links are initially attacked. However, the link cascading process 
can be effectively terminated by setting a few strong nodes in the network which do not respond to any 
link reduction. Finally, a simulated annealing algorithm is used to optimize the location of these strong 
nodes, which significantly improves the robustness of the networks against the link cascade.

© 2016 Elsevier B.V. All rights reserved.

Network robustness has always been a hot topic in complex 
network research as it describes how real networked systems 
respond to internal failures or external attacks [1]. Specifically, 
related findings can help us understand the formation mecha-
nisms of many real phenomena such as blackouts [2] and financial 
crises [3]. Many models have been employed to study network ro-
bustness so far [4]. One of the most popular ways is to investigate 
the network robustness with percolation theory which focuses on 
the size of the giant component after the network is attacked [1]. 
With this theory, many real networks with power-law degree dis-
tribution are found to be surprisingly tolerant of random failure 
but very sensitive to malicious attack on large degree nodes [1]. It 
was found later that scale-free networks [5] with onion structure 
can resist both random and malicious attack [6].

In fact, the influence of the internal failure and external attacks 
on networks will be significantly amplified if some cascades are 
triggered, finally leading to a catastrophic damage [7]. Such effect 
was studied with an interdependent network model in which a 
failure of a node in one network will result in the failure of the 
node in another network interconnected with this node [8]. From 
a theoretical point of view, the cascading mechanism changes the 
phase transition of the percolation from second order to first or-
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der, which makes the transition become explosive and hard to 
predict [1]. In addition to interdependent networks, many other 
models have been developed to study cascading processes on com-
plex networks [9]. For instance, the sandpile model [10] and the 
Motter–Lai model [11] study a kind of system where loads can 
redistribute among the nodes in networks. As such, intentional at-
tacks can lead to a cascade of overload failures, which can in turn 
cause the entire or a substantial part of the network to collapse [1].

The cascading process on networks has been intensively stud-
ied [12–14]. In particular, the spatial-temporal propagation of the 
cascading was investigated [13]. However, the cascade of links 
in networks has been seriously overlooked. Among the existing 
works, the most relevant ones are to investigate how giant com-
ponent size of the network will be influenced if the initial attack 
is on links instead of nodes [15]. However, the influence of link at-
tack on network could be more complicated in reality [16]. Taking 
the financial system as an example, each bank maintains a bal-
ance sheet [17]. If some incoming links (e.g. incoming money flow) 
are cut, in order to maintain the balance sheet the bank has to 
cut some outgoing links (e.g. outgoing money flow) [18]. This will 
force the neighboring banks to cut some outgoing links as well. 
If this happens iteratively, the cascade of links will be triggered 
and finally result in a huge number of lost links in the network. 
The link cascade is actually more suitable for modeling the finan-
cial crisis than the node cascade as in real cases not many banks 
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Fig. 1. (Color online.) An illustration of the link cascading process on a toy network. 
For simplicity, we set the parameter f = 1 here. The dotted link in (a) is initially 
attacked. One of the outgoing links of the node 4 is randomly selected and removed 
(the dotted link in (b)). As the node 8 loses an incoming link in step (b), it will 
lose one outgoing link in step (c). This process continues until the node lost an 
incoming link in the previous step has no outgoing link. The resulting network is 
shown in (d). One can see that most of links in this toy network disappear.

go bankrupt but many of their transactions disappear during the 
crisis [19].

In this letter, we propose a link cascade process to model how 
the initial removal of links affects the network structure. The link 
cascade model is based on the flow-balance mechanism which re-
quires that the incoming flow of a node is equal to the outgoing 
flow. Consequently, the removal of some incoming links of a node 
may cause it to lose some outgoing links, such process continues 
and finally causes a link cascade. We find that with this model, re-
moving a few links initially can significantly destroy the network. 
However, the cascade can be effectively stopped if a few “strong” 
nodes that can resist any link reduction are introduced. We find 
that the allocation of these strong nodes are crucial to the effect 
of terminating the link cascade. Finally, a simulated annealing al-
gorithm is used to optimize the location of these strong nodes, and 
the performance of some traditional centrality index for allocating 
the strong nodes are compared.

1. Model description

Directed networks have been used to model many real systems 
with some sort of flow between nodes. Examples include the fi-
nancial network where a directed link represents the money flow 
from one financial institute to another, and the international trad-
ing network where a directed link stands for the product flow from 
one country to another. In this study, we mainly discuss an un-
weighted directed network model described by an adjacency ma-
trix A where Aij = 1 if there is a directed link (i.e. flow) from node 
i to j, and Aij = 0 otherwise.

We assume that some fraction p of links in the network can 
fail (disappear) initially [15]. In such flow-based directed network, 
each node has some number of incoming links and outgoing links. 
We then assume that each node has to keep the flow passing 
through it balanced, i.e. when a node loses an incoming link, it 
will have a probability f to randomly lose an outgoing link. In this 
letter, we only consider the case where f ≤ 1 as each node will 
have some level of ability to compensate the lost incoming flow, 
without cutting its outgoing link and passing the loss to its neigh-
bors. A smaller f indicates a stronger ability of the node to absorb 
the loss. The link losing process will cause a cascade of links in the 
network, and an illustration is given in Fig. 1.

2. Results

We first study the relation between the fraction of initial failed 
links p and the fraction of final remaining links r in this link 
cascade model. Three typical values of f are considered and the 
results on Erdös–Rényi (ER) networks [20] are presented as sim-
ulation results in Fig. 2(a). One can see that r decreases rather 
fast with p, especially when f is large (e.g. f = 0.8). In this case, 
even if 10% links are initially removed, the network will lose over 
40% links at the end, indicating the strong destructiveness of the 
link cascade in networks. In addition, we study the dependence 
of r on f in Fig. 2(b). The results under three p values are pre-
sented. One can see that the relation between r and f is strongly 
nonlinear, i.e. r stays stable first with the increase of f , and then 
drops dramatically when f is larger than 0.6. This phenomenon is 
consistent under different p. This indicates that even if the initial 
failed links are very few, the final lost links can be many, given a 
large f .

We then try to understand the results in Fig. 2(a)(b) analytically. 
If a network is large and dense enough, it tends to have many long 
chains. In this case, an initial failure may trigger a link cascade 
affecting many links. Suppose the link cascade triggered by each 
initial failure is independent, there are two possible reasons that 
the cascade comes to an end: either it ends due to f < 1 or the 
cascade has reached a node with 0 outgoing links. We denote the 
likelihood of reaching a node that has 0 outgoing links as p0. In a 
random network, we have the following expression of the fraction 
of finally lost links as

p
∞∑

l=0

[ f (1 − p0)]l = p

1 − f (1 − p0)
. (1)

Now we consider how to calculate p0 in ER networks. In a directed 
ER network, both the out-degree and in-degree follow Poisson dis-
tribution. In the adjacency matrix Aij , if row i consists of no 1, 
node i has no outgoing links. So the number of 1 (denoted by Xi ) 
will follow an independent and identical Poisson distribution (i.i.d)
with λ = 〈k〉. Then we get

p0 = 1 −
N∏

i=1

P (Xi �= 0) = 1 −
N∏

i=1

[1 − P (Xi = 0)]

= 1 − [1 − e−〈k〉]N . (2)

Therefore, the faction of finally remaining links can be calculated 
by

r = 1 − p

1 − f (1 − e−〈k〉)N
. (3)

The analytical solutions are presented in Fig. 2(a)(b) for compari-
son. In Fig. 2(a), one can see that the theoretical curve coincides 
well with the simulation results when p is small. This is reason-
able, as the link cascade triggered by each initial attacked link can 
be considered as independent only when the initial attacked links 
are few (i.e. p is small). When p is large, the theoretical solution 
would underestimate the faction of remaining links (i.e. r). How-
ever, the analytical solution is still meaningful because in real cases 
the initial failed links are usually very few. In Fig. 2(b), the results 
of the theoretical curves with small p is shown. The theoretical 
curves overlap well with the simulation results. This indicates that 
the analytical solution can accurately predict the relation between 
r and f when p is small.

In this letter, we will study the link cascade process on both ar-
tificial networks and real networks. For artificial networks, we will 
consider Barabasi–Albert (BA) networks [5] and Small-World (WS) 
network [21] besides the ER network. These networks are undi-
rected networks originally. To obtain directed networks, we assign 
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